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Chapter 1

Finitely Degenerate Elliptic
Equations

1.1 Hypoellipticity and Sub-elliptic Estimate

1.1.1 Hormander’s Sum of Square Theorem

For n > 2, Q C R™ is an open domain, X = {X;, X3, -+, X, } is a system of real smooth
vector fields defined on €. That is

X; = Zajk(:v)amk, j=1--,m,
k=1
where the real function a;x(x) belongs to C>°(€). If X and Y are real smooth vector fields,
we can define the commutator:
X, Y]=XY-YX. (1.1.1)

Then it is easy to see that the commutator as a kind of product is linear respect to every
variable, and also antisymmetric:

(X, Y] =-[Y, X].
Moreover, it holds the Jacobi identity: For three vector fields, it holds that
(X, [Y. Z]| + [V, [Z, X]| + [Z,[X, Y]] = 0.

So, all real smooth vector fields not only constitute a vector space with respect to the real
number field, but also form a Lie algebra in the view of the commutator. The Lie algebra
induced by X (denoted by X(X;, Xs, -+, X,,)) means the space spanned by

1»-717Xjk]"'m'

Also, the element of X(X7, Xo, -+, X,,) is a C*° real vector fields.

(X0 (X [Xjg, - [X

5yt

Definition 1.1.1 (Hoérmander’s condition). For n > 2, the systems of real smooth vector
fields X = {X1,Xa, -+, X} defined on an open domain  in R™. Let J = (j1, -+, Jjr)
with 1 < j; < m, we denote |J| = k. We say that X = {X1,Xo, -+, X} satisfies the
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2 CHAPTER 1. FINITELY DEGENERATE ELLIPTIC EQUATIONS

Hérmander’s condition on S if there exists a positive integer Q, such that for any |J| =k <
Q, X together with all k-th repeated commutators

Xy =X, X [(Xias - [ Xy X))

span the tangent space at each point of Q). Here @ is called the Hormander index of X on €2,
which is defined as the smallest positive integer for the Hormander’s condition above being
satisfied.

Definition 1.1.2 (Finitely degenerate elliptic operator). If the real smooth system of vector
fields X satisfies the Hormander’s condition on Q with 1 < Q < +o0o, then we say that X is
a finitely degenerate system of vector fields on Q and Ax = >_1" | X? is a finitely degenerate
elliptic operator on €.

Example 1.1.1 (Kohn Laplacian operator). Let X = (X1,---,Xn, Y1, -+ ,YN), where
Xj :[“)xj +2yj8t,Yj :8yj —2(Ejat7j = ].7 7.Z\/v.

defined on Heisernberg group Q C R2V*1 then the Kohn Laplacian Ax = Zf\il(Xf +Y7?)
18 a finitely degenerate elliptic operator on ).

Example 1.1.2 (Grushin operator). Let X = {0y, -+ ,04,_,, 2104, } defined on an open
domain  of R™ which contains the origin, then Ax is a finitely degenerate elliptic operator
on S.

Let .
L= ZXJQ(:E) + Xo(z) + (),
j=1
where X;, 7 =0,1,---,m, are real smooth vector fields and c(z) is a C* function defined
on 2.

Definition 1.1.3 (Hypoellipticity). For all uw € D'(Q2), if Lu € C*°(82) implies u € C*°(Q).
Then we say that the operator L is hypoelliptic on €.

Theorem 1.1.1 (Hérmander’s sum of square theorem, c.f.[24]). If the real smooth system
of vector fields X satisfies Hormander’s condition on §2, then the operator L is hypoelliptic
on S.

For simplify, here we give a proof of Theorem for the case L = 7" | X ?(x). First,
we introduce the following pseudo-differential operator class.

Definition 1.1.4 (Symbol class S™(Q2)). Suppose Q is an open set in R™ and m is a real
number. The symbol class of order m on 2, denoted by S™(Q), is the space of functions
p € C®(QxR™) such that for all multi-indices o and B and every compact set K C §, there
is a constant Cy g K such that

sup DS Dgp(x,€)| < Cayp i (1 + €)™ 10
S

Definition 1.1.5 (Pseudo-differential operator). A pseudo-differential operator B (PsDO
for short) of order m on Q is a continuously linear map from C5°(§2) to C* of the form

Bu(x) = (2#)7"/ e Ep(x, E)a(€)de,  foru € CFP(R), and p € S™(N), (1.1.2)

n



1.1. HYPOELLIPTICITY AND SUB-ELLIPTIC ESTIMATE 3

which can be extended to a continuously linear map from E' () to D'(). We shall generally
denote the map in (1.1.2) by p(x, D),

p(, Dyu(x) = (27) " / ¢ Ep(e, E)a(E)dE, u € C5(Q).

And we denote the set of pseudo-differential operators of order m on Q by ¥™(Q):
Q) = {p(z, D) : p e S™(Q)}.
Example 1.1.3. For s € R, the function (z,&) — (1+]£]?)*/2 belongs to S*(R™), and hence

z,
the operator A°® defined by A®f(x) = F~1((1 + [£]2)*/2f(€)) belongs to ¥*(R™), where F~!
is the Fourier inverse transformation.

Lemma 1.1.1 (c.f. [I8]). If P € U™ () and Q € U™ (Q), then
(1) PQ € U™ (Q) and

opg=o0p-og (mod Sm+m/_1(Q)).

(2) [P,Q] € ¥+ ~1(Q) and

1 r_
op,Q] = %{O‘p,o‘@} (mod S™T™ 72(Q)),

where [+, -] is the Lie bracket in (L.1.1) and the Poisson bracket {op,00} defined as follows:

n

7 Oop Jog B doq dop
{UPan}*;(g& Ox; 0&; al‘i)'

Definition 1.1.6 (Strongly elliptic). We say that a symbol p € S™(Q2), or its corresponding
operator p(x, D), is strongly elliptic if for every compact K C § there are positive constants
¢, C such that

Re p(z,€) > c(1+|€]))™2 for x € K and |¢] > C. (1.1.3)

Lemma 1.1.2 (Garding’s inequality, c.f. [I8]). Supppose p € S™(Q) satisfies (1.1.3)), for
any € > 0, any s < m/2, and a open subset V' with compact closure in Q, there are ¢ > 0
and C > 0 depending on V', such that

Re (p(x, Dyu,u) > (c —e)l|ully, o — CllullZ, we CG(V).

Lemma 1.1.3 (Paley-Wiener theorem, c.f. [48]). ¢({) is the Fourier-Laplace transform of
a function f(z) € C§°(R™) with supp f C {z € R", |z| < A} if and only if for any N € N*
there is a constant Cn such that

19(Q)] < Cwe M <l 14 (Y.

Lemma 1.1.4 (c.f. [I8]). For the Sobolev space H*(R™) and H} .(2), we have
(1) Every distribution with compact support belongs to H®(R™) for some s € R.
(2) f e H .(Q) if and only if of € H*(R™) for every ¢ € C§°(Q?). Moreover H*(R™) C

H; () for every open subset @ C R™.

loc
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Proposition 1.1.1. If X satisfies Hormander’s condition on . Then for any K CC
and s € R, there exists C' > 0 such that

[ullf s <C(Y - I Xaull2 + [ull?), for all ue C§°(K), (1.1.4)
lo]<Q
where Q is the Hormander index of X on Q, a = (o, ,a1) € NF, 0 < a; <m, X, is the

k-th repeated commutators.
Proof: By Hormander’s condition, for any xg € Q, there exists r(zp), such that
> [ Xa(x0,8)] >0, ££0.
la|<r(zo)

Since 3|, <r(zo) [Xa (20, &) is a first order positive homogeneous function of &, then for a
small neighborhood O(zg) of xg, it holds that

T+ ) [ Xal@,OF = Co(1+[¢P),
o <r(0)

where (z,£) € O(xg) x R™, Cy > 0. Since K is compact, thus we can choose a finite number
of small open sets O(x1),---,0(x;) which can cover K. Also @ is the Hérmander index
means that r(z) < @ for any = € Q, then for some constant C' > 0, we have

L+ 3 [Xa(@, QP = C+ [P,
la|<@Q

where (z,£) € K x R". So 1+ Z X2 is strongly elliptic. Then Garding’s inequality

la|<Q
(Lemma [1.1.2)) implies the estimate (1.1.4]). O

Proposition 1.1.2. For any K CC Q and |l € N*. Then there exist C > 0 and £(l) €
(0,1/2") such that

S X elPy—rpe < CILul + [[ull?). for all u € CF(K), (L.15)
Jaf <1

where a = (aq,- - ,ar) € NF, 0 < oy <m, X, is the k-th repeated commutators.

Proof: We prove (1.1.5) by induction. For |a| = 1, we need to prove
D IXgull? < O(ILul + Jlull?). (1.1.6)
j=1

Since X is a real vector fields, then it is self-adjoint and X7 = — X +a;(x), here a;(z) € C*.

Thus .
(Lu,u) ZXQ’LL u Z 1 X;ulld + (Zijaju)
j=1

Then

D IXGulls < Co(l(Zuyw)| + [lull) < C(I1Lullg + [lullf). (L.L7)
j=1
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This means that (1.1.6)) holds for s = 0.
Next, for s # 0, let A® be a PsDO with the symbol (1 + |¢|?)%/2, then by Lemma m

and direct calculations, we know
[vaAs} € \IIS(Q))aj =12---,m

[L,A] = RiX;+ R, Ry € U%(Q),j=0,1,--+ ,m.

j=1

Let v = A®u. Then from u € C§°(K) and Paley-Wiener theorem (Lemma |1.1.3]), we have
v e Cg(K') for any K C K' CC Q. Next, from (1.1.7)), then

m
D IXjuli <
j=1

NE

(1A= X)) + ||[X;, A~*Jo]|?)

<.
Il
-

NE

< ) IX50llg + Cllvllg < C(1(Lv, )] + [lull?)
=t - (1.1.8)
< O(|(A*Lu, Aw)| + Y |(R5 X ju, Au)| + | (Reu, A)| + [[ull3)
j=1
< O(ILul? + & Y 11X ull? + Cellul?).
j=1
Taking e small such that Ce < 1/2, then (1.1.8)) implies (1.1.6]).
Suppose |a| = k and 0 < (k) < 1/2%, we have
S I Xatl201se < CUIZul2 + ul2), forallue CE(K).  (11.9)

lo| <k

Then for « satisfying |a| = k+ 1, we seek e(k + 1) such that (1.1.5) is true. Let o = a3 + o’
with |a1] = 1 and |o/| = k, that means

X(x = [XjaXo/]a ]: 1325"' , .
Then

||Xau||§—1 = (Xau, AzgizXau)
= (X;Xou,Tu) — (Xo X;u, Tu)
< (X, TXju)| 4 | Xorw, Tu| + [(Xju, TX prw)| + [(Xju, Tu)|
< O(I1Xjull§ + 1 Xarul3e_q + llull3e—q + [[ull3)

(1.1.10)

where T and T belong to the PsDO class W2~ 1. Taking ¢ = e(k + 1) < &(k)/2 < 1/2, then

[ Xarull3ey < [ XarulZp—1,  lul3ey < [lull. (1L.1.11)

So (1.1.7), (1.1.9), (1.1.10) and (1.1.11)) imply that (1.1.5) holds for |o| = k+ 1 and s = 0.
This means

Y X aulZrny < C(ILull§ + [ul)F), for all u € C5°(K).
la|<k+1
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Next, for s # 0, similar to the above estimates, using the commutator technique, we can
also obtain

> IXaul 21y 1pe < C(ILull2 + [Ju)2), for all u € C5°(K).
la|<k+1

These complete the proof of Proposition [I.1.2} O

Proof of Theorem [1.1.1): (1.1.4) and (1.1.5) imply that for any K CC €, there exist
C >0 and £(Q) € (0,1/29) such that

lull(g)ss < CUILull? + [[ul?), for all u € C§°(K). (L.1.12)

For any ¢ € C§°(Q), if u € D'(Q0), then pu € £'(Q). Lemma tells us that there exists
so € R such that
pu € H(R™) C H;®

loc

(Q). (1.1.13)
On the other hand, Lu € C°°(Q2) means that for any s € R, it holds that

Lu € H, (). (1.1.14)

Then combining (1.1.12)), (1.1.13) and (1.1.14]), we have pu € HS°+E(Q)(Q). Repeating the

loc

process above, we know pu € H (), for any s € R, which implies pu € C*°(Q). Next, by
the arbitrariness of ¢ € C§°(€2), we can deduce that u € C* (). O

1.1.2 Sharp Sub-elliptic Estimate

From the discussions above, if X satisfies the Hérmander’s condition with the Héormander
index @, then the sub-elliptic estimate holds with the index £(Q) < 1/2%9. However,
the number 1/ 29 is not optimal. In fact, we have the following sharp sub-elliptic estimate
(cf. [16] and [25]).

Theorem 1.1.2. If the system of real smooth vector fields X satisfies the Hormander’s
condition on ). Then

9 ~

191722, ) < CQUUIXUla0y + Q) ullagey), for all ue C().  (1.1.15)
Here Q is the Hormander index of X on Q, |V|Y? is a PsDO with the symbol |£|'/?,
C(Q) >0 and C(Q) > 0 depending on Q.

Remark 1.1.1. After we introduce the sub-elliptic metrics (in Section 1.2) and the weighted
Sobolev spaces (in Section 1.3), we shall give a brief proof of Theorem in Section 1.3
below. Also we can point out that the number 1/Q in is optimal, one can refer to
[51] for the details.

1.2 Geometry Induced by Vector Fields

1.2.1 Sub-elliptic Metric

Let © C RY be a connected open domain, and let X = {X;, Xo, -, X,,} be O real
vector fields defined in the neighborhood of 2 (or defined on RY).
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Definition 1.2.1 (Sub-unit curve). For any § > 0, let the sub-unit curve C1(08) be the class
of absolutely continuous mappings ¢ : [0,1] — Q which satisfy

o'(t) = ch(t)Xj(gp(t)), a.e. with |c;(t)] < 6. (1.2.1)

Definition 1.2.2 (Carnot-Carathéodory metric). We define the Carnot-Carathéodory dis-
tance di(x,y) as follows:

iy () = inf{d > 0: Jp € C1(0) with p(0) =z, p(1) =y.},
A +oo, if there doesn’t exist p € C1(0) with p(0) = z, (1) = y.

Moreover, we say that dy is the Carnot-Carathéodory metric if dy < oo.

Remark 1.2.1. If we only have the single vector field X = {0,,} in R?, then di(z —y) =
|z —y| if © and y lie on a line parallel to the x1 axis; otherwise dy(x,y) = co. On the other
hand, if X = {0y, ,0uy} in RN, then dy is the Buclidean metric.

Theorem 1.2.1 (Rashevski-Chow’s connectivity theorem, c.f.[I2 [49]). Let the system of
vector fields X satisfy the Hormander’s condition on an open connected set Q C RN . Then
for every couple of points x,y € Q there exists an absolutely continuous curve @ contained
in Q and jointing x to y, such that ¢ is composed by integral curves of the X;’s.

Remark 1.2.2. Rashevski-Chow’s connectivity theorem tells us that if the system of vector
fields X satisfies the Hormander’s condition, then dy is the Carnot-Carathéodory metric.
However, the Carnot-Carathéodory distance above might be well defined even if the vector
fields do not satisfy the Hormander’s condition (e.g. some cases for the vector fields to be
infinitely degenerate).

Suppose X satisfies the Hormander’s condition, we introduce the sub-elliptic metric and
the metric balls induced by X.

Let
X(l) - {le e 7Xm}7 X(2) = {[leXQ]v Tty [X’mflem]}v ete.
so that the components of X*) are the commutators of length k. Let Y7,--- , Y, be some
enumeration of the components of X ... X*)_ If Y] is an element of X, we say Y; has

formal degree d(Y;) = j.

Definition 1.2.3 (Sub-elliptic curve). For any 6 > 0, let the sub-elliptic curve C2(J) be the
class of absolutely continuous mappings ¢ : [0,1] — Q which satisfy

q
Q') = ¢;()Y;(p(t), ae with |c;(t)] < 5%, (1.2.2)

j=1
where Y1,--- Y, are some enumeration of the components of XM oo X®) for some k €

N* satisfying span{Y;}{_, = RYN and d; > 1 is the formal degree of Y;.

Remark 1.2.3. span{Y;}_, = RY means that for any two points in 2 which can be con-
nected by a sub-elliptic curve.

Definition 1.2.4 (Sub-elliptic distance). We define the sub-elliptic distance p(x,y) as fol-
lows:

plxz,y) =1nf{d > 0: I p € C2(0) with p(0) =z, (1) = y.}.
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Remark 1.2.4. p(x,y) is called the sub-elliptic metric on 2.

Proposition 1.2.1. If K CC Q is any compact set, then there are constants Cy, Cs so that
ifx,y e K,

Cilz —y| < pla,y) < Calz —y|"/?, (1.2:3)
where Q is the Hormander index of X on €.

Proof: Let K CC ) be an arcwise connected compact set. There is a constant C' so that if
x,y € K, there is an absolutely continuous function ¢ : [0,1] — Q with ¢(0) = z,¢(1) =y
and |¢'(t)| < Clo — y| for all t. Since Y7,---,Y, span RY, then we can write

a
Pt = ci(Yi(e(t),
j=1
with |¢;(t)] < C'|¢'(t)| < C"|x —y| = C"(Jx — y|*/4)%. Observe that d; < Q, it follows
that
pla,y) < Cla —y|V/<.

Conversely, if z,y € K and p(z,y) = J, then there exists ¢ € C5(2§) with ¢(0) = z, (1) =y
and ¢'(t) = ;1.:1 a;j(t)Y;(p(t)) with |a;(t)| < (26)%. Since the components of every Y; are
uniformly bounded in €2, it follows that

q
' (1) < CY (26)1D < 6.
j=1

Hence L
o=l =| [ @] <05 = C'pla.).
0

Theorem 1.2.2. If X satisfies the Hormander’s condition on 2, then the metrics di and
p are locally equivalent.

Lemma 1.2.1 (c.f. Lemma 2.20 in [44]). Let w € ), and w has a neighborhood U so that
if ©1 and 2o are in U with p(x1,z) < €, then the following two conclusions hold:

(a) There exists xo € U with dy(x1,22) < Ce, and p(xa,00) < Ce'T1/Q,

(b) Given y € U there is a number n(y) > 0 so that if |z —y| < n(y), we have d1(y, z) <
Clz —y|¥/9.

Proof of Theorem [1.2.2: It is obvious that p < d;. On the other hand, near a point
w € 2 we can choose U a neighborhood of w which is so small such that we may use the
result of Lemma on U. Let = x1, and y be in U with p(x,y) = 6. We apply Lemma
with 21 = 2, oo = ¥ and obtain a point x, with

dy(z1,22) < Cé and p(za,y) < Co e < 4/2,

if C6'/Q < 1/2. We can then apply Lemma again with ¢ = §/2 to obtain x3 so that
plxe,x3) < C§/2, p(x3,y) < §/4. In general, given & = 1,2, - ,x; we can find ;44
so that p(zj,zj11) < C6/2771 and p(zj41,y) < §/27. Moreover d; satisfies the triangle
inequality so di(x,z;) < C6. By part (b) of Lemma we see that if j is sufficiently
large, di(xj,y) < 0. Using the triangle inequality again for d; completes the proof. O

Remark 1.2.5. To prove Lemma|1.2.1], we need Campbell-Hausdorff formula and the gen-
eralization of the Campbell-Hausdorff formula. For more details about Campbell-Hausdorff
formula, one can refer to [24], [44)] and here we omit these.
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1.2.2 Sub-elliptic Balls and Doubling Property

It follows from Proposition that the sub-elliptic metric p : © x Q@ — [0,00) is
continuous. Then we can define the following sub-elliptic ball.

Definition 1.2.5 (Sub-elliptic balls). We can define a sub-elliptic ball B(x,0) on Q by

B(z,0) ={y € Q: p(x,y) < d}.
Now, we give a characterization of finitely degenerate vector fields in the view of geometry.

Proposition 1.2.2 (c.f.[16]). The following statements are equivalent:
(1) X satisfies the Hormander’s condition with the Hormander indez Q.
(2) There exists C > 0 such that

Bp(x,p) C Bx(x,Cp®), for anyz € Q,p> 0.

Here Bg(z, p) is an ordinary Buclidean ball of radius p about x, Bx (x, Cp?) is a sub-elliptic
ball of radius Cp® induced by X .

For each N-tuple of integers I = (i1,--- ,in) with 1 <14; < g, set
)‘I(m) = det(Yiu T 7YZN)(33)

(Ify;, = Ziv:1 a;i(x)(0/0xy)), then det(Y;,,--- , Y, )(x) = det(ajx(z)). We also set d(I) =
d(Y;,)+ -+ d(Y;,) and then we define

Az, 8) = Y |Ar(x)]o?®,
I
where the sum is over all N-tuples. Now we state the known result on the volumes of the
balls B(z, 9).

Theorem 1.2.3 (Nagel-Stein-Wainger’s theorem of metric balls). For every compact set
K CccC Q, there are constants C1 and Cy so that for all xz € K,

|[B(,9)|

<
0<C; < A(x7§)

< Cy < +o00.

Example 1.2.1. Let us consider the Grushin vector fields:
X1 =0y Xo =120y, in R2.
To make \;(x) # 0, we can only have two choices as follows:
Yi, = 0, Yi, =x0y; or Y;

i1

= 8171/;2 = 81/

For the case Y;, = 0,,Y;, = 20y, then \;(z) = x and d(I) = 2. For the case Y;, = 0,,Y;, =
Oy, then Ar(xz) =1 and d(I) = 3. So the above theorem states that

C1(6% + 6%[z]) < |B((2,y),0)| < C2(8° + 6°[x]).

In particular, the balls of center (0,y0) have volume comparable to 52, while the balls of
center (xq,vo) with large xo and small radius & have volume comparable to 62.
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Definition 1.2.6 (Doubling property). We say that (2, p) satisfies doubling property if for
any K CC Q, there exist rg > 0 and C > 1 such that

|B(x,2r)| < C|B(z,r),

where
re K,r< ro,é(m,r) ={yeQ,plx,y) <r}

Remark 1.2.6. If X satisfies the Hormander’s condition, since A in Theorem [1.2.5 is a
polynomial in § of fized degree, it follows immediately from Theorem that (2, p) is
doubling. On the other hand, if p < 1, then from Proposition (2),1116 can directly deduce
that |Bx (xz,2p)| < C|Bx(z,p)|. That means that (Q, p) is doubling.

In order to describe the sub-elliptic ball B(z,J) more precisely, we need following con-
cepts.

Definition 1.2.7 (Métivier index). If X satisfies the Hormander’s condition on € with the
Hérmander index Q, then for each 1 < j < @Q and x € Q, we denote V;(x) as the subspace
of the tangent space T,(Q) which is spanned by the vector fields {X;} with |J| < j. the
Métivier index at x € Q is defined as

Q
v(z) = Zj(vj(x) —vj_1(x)), here vy = 0. (1.2.4)

j=1

where v;(x) is the dimension of Vj(x).

Moreover, if the dimension of Vj(x) is constant v; for a neighborhood of each x € .
Then we say that X satisfies the Métivier’s condition on Q and v = v(x) is the Métivier
index on Q.

Remark 1.2.7. If X satisfies the Hormander’s condition on ), then the volume of the ball
with small radius r induced by the sub-elliptic metric satisfies

|B(z,r)| = 1", for all z € Q, (1.2.5)
where v is the Métivier index.
Now let us introduce the following definition.

Definition 1.2.8 (Hausdorff dimension). Let £ be an open connected bound domain in R™
with the metric p. The Hausdorff dimension of Q is defined as

inf{a > 0; H*(Q?) = 0} = sup{a > 0; H*(Q) = o0}, (1.2.6)
where
H*(Q) = (%1_1)%}[5 (Q), H§ () :=inf { ; diam(£2;)%;Q C izLJlQi, diam($Y;) < 6},

and
dlam(Ql) = max{p(m,y); T,y € Ql}
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Example 1.2.2. (1) Let Q be an open connected bound domain in R™ with the Fuclidean
metric p. Then Hausdorff dimension of  is n.

(2) Let Q2 be an open connected bound domain in R2NtL with the sub-elliptic metric p
induced by Heisernberg Group. Then in this case the Métivier’s condition is satisfied, and
Hausdorff dimension of  is 2N + 2, which is the same with the Métivier index v.

(3) Q is an open connected bound domain in R™ with the sub-elliptic metric p induced
by X = (02,502, ,0u,_,,70s,). Then Hausdorff dimension of  isn +1.

Remark 1.2.8. In [38], the author proved that if X satisfies the Hormander’s condition
and Métivier condition on 2, the Métivier index v on 2 equals to the Hausdorff dimension
of Q. Moreover, if the Métivier condition does not hold on  for X, then the Hausdorff
dimension might be the general Métivier index U (see Definition below).

Now we give a brief proof of Nagel-Stein-Wainger’s theorem (For the detail proof please

see [44]).

First, we introduce a simplification of notation. If z € E CC Q and I = (i1, -+ ,in) are
fixed, we shall relabel the vector fields {Y;} be setting U; =Y;;, 1 <j < N, and let V;, 1 <
j < g— N, being some enumeration of the remaining vector fields. If u = (uy,--- ,uy) € RV
and v = (v1,- -+ ,v-n) € RN we let

N q—N
u'U—i—v-V:ZujUj-i- Zvjw
j=1 j=1
and

D, (u) =exp(u-U+v-V)(x).
For v € RT™N, we let 2 = exp(v - V)(z) and introduce one more family of balls
Bi(z,2,0) = {y € Qy = exp(u-U +v-V)(x), with |u;| < 34U}, (1.2.7)

Thus By(z, 2, §) is exactly the image, under the map ®, of the box {u € RY;|u;| < s} =
Q(9).
Proposition 1.2.3. Let E CC Q be compact. There exist constants 0 < ng < n1 < 1 so that
ifreE, |vj| < n96%Vi) 1 < j<q— N and § > 0 there exists an N-tuple I = (i1,--- ,iy)
with the following properties:

(1) @, is global one-to-one for |u;| < (m16)4V3)

(2) Let J®, denote the Jacobian of ®,, then on the box Q(n10), we have

1
TA(@)] < 10,] < 4r (@) (1.2.8)

(3) Let z = exp(v - V) (z), then
B(x,120) C By(z,2,0) C B(x,9). (1.2.9)
Proof of Theorem [1.2.3: First, Proposition 1) and (2) show that Bj(z,z,n10) is
the image under the one to one mapping ®, of the box Q(1710) and the Jacobian of this
mapping is bounded between two constant multiplies of A;(x), then it follows that
|Br(z, z,m0)| = [Ar(@)[|Q(m6)| ~ [Ar(x)s"D. (1.2.10)

Moreover, Proposition [I.2.3(3) tells us that B(z,n20) C |Br(z,z,m6)| C B(z,6), it follows
that
1B(x,8)| = > [Ar(a)[6"D). (1.2.11)
I

Then (1.2.10) and (1.2.11]) imply the result of Theorem O
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Next, we prove Proposition [1.2.3

Lemma 1.2.2. Let E CC Q be compact. There exist constants 1 € (0,1) so that if v € E
and § > 0 there exists an N-tuple I = (i1,--- ,in) satisfying

Az (x)]69D) > p, max |Ag(z)|64), (1.2.12)

Proof: Let E CC Q be compact let € E. Let Iy = Iy(xg) be an N-tuple such that d(Iy)
is minimal among all N-tuple J with A;(xo) # 0, and such that

A1y (0)] = A (0)]- (1.2.13)

max
d(J)=d(lo)
Then there exists dg depending on zy such that

At ag) [647) = |25 (67, (1.2.14)

for all 4, 0 < 6 < &g, and all N-tuple J.
Since the Jacobian of the exponential map is the identity at the origin, we can find an
open set W = Wy, in Q) containing zy so that the mapping

(up, - yup) = @p(ur, - up) =exp(u-U+v-V)(z)

is globally one to one on |u| < dy for all x in W, |v| < dg. Also for some W’ CC W, we know
1
g (@) 870 > LA ) 9, (1.2.15)

for all 0 < § < dg, all N-tuple J and z € W’. Next, Choosing a finite open covering
Wy, Wy, of E, taking 6 = inf léi and

j=1,

T = {1 g, ()00 = inf [y, ()59,
J=1,s

)

then . 1
IAp(x)[8%D) > §I/\J(x)l5d(‘”, (1.2.16)

for all 0 < 6 < 4, all N-tuple J and = € E. O

Proof of Proposition [1.2.3(2): First, we have

0 0
o, = Dy(=—), - ,dP,(=—)). 1.2.1
IO, = det (d, (), 1, (50) (1.217)
However
det(Uy, -+, Un)(®o(w))] = [Ar(@y(w))]. (1.2.18)
By the technique of exponential mapping (see [24] [44]), we can prove that
1
@) < A (@0 ()] < 2Ar(@)] (1.2.19)
and .
Z; = 2(53‘1 + b0)Ul, (1.2.20)

1=1
where Z; = d@v(%L 01| < x64U1)=4Wi) and x can be taken sufficiently small. Then from
(1.2.20)), we can solve the U; in the term of the Z;. Then (1.2.17)), (1.2.18)), (1.2.19)), (1.2.20)
imply (L.2.8). O
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Lemma 1.2.3. For |v;| < 5%V if z = exp (v V) (), then
B(z,nd) C By(z,z,0), (1.2.21)
where © € E and the n-tuple I satisfy (1.2.12)).

Proof: Let y € B(z,nd). Then there is an absolutely continuous map ¢ : [0,1] — Q with

©(0) =z, p(1) =y and ,
= bi(t)Y;(e(t))

j=1

with |b;(t)| < (n8)%. We can also assume that the map ¢ is one to one.
Let F be the set of numbers so € [0, 1] such that there exists an absolutely continuous
mapping 6 : [0, so] — R™ such that |0,(s)| < (6/2)"4) and

) = exp 29 Wi +v-V)(x), 0<s < so.

Since the mapping (u1, - ,un) + exp(u-U + v - V)(x) is locally one to one on {u €
R”; |u;| < §4U)}, then we let 5 = sup{so € F}, and it can be deduced that 5 < 1.
The mapping @, (u1, - ,u,) =exp(u-U +v-V)(x) is locally one to one, and since the

map ¢ and 6 are one to one on [0, 5], and ¢(s) = ®,(0(s)). It follows that &, is actually
globally one-to-one on some small neighborhood of the image 6[0,3]. Thus we can think
of the components of the inverse map (1, -+ ,%,) as being well defined functions in some
neighborhood of ([0, 3]).

Suppose § < 1, then for some j, we must have

Wi (8) = (6/2)" ). (1.2.22)

On the other hand, for any j, we have
W)jo (§)| = Wjjo( w]o |/ w]o ds|

_ ,/ Zb )by (3)ds| (1.2.23)
3 d(UJO) d U]) — dj d(Ujo)
< (n6)4Cs Cn%é .

Then if 7 is small enough such that Cn% < (1/2)%Vio), then (1.2.23) is contradictive with
(1.2.22). This means § = 1. And then

N
y=p(1)=exp(d_0;()T; +v-V)(x),

j=1
with [6;(1)] < 69U and so y € Br(w,2,0). O

Proof of Proposition [1.2.3(3): From the definitions of B(z,4), B;(x,z,6) and Lemma
it is obvious that if |v|; < < 64V3) for 1 < j < ¢ —n then we have the inclusions

Bi(x,2,8) C B(z,9), (1.2.24)
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where z = exp(v - V)(z). Next, for the above n > 0 in Lemma taking m1,72 € (0,1)
such that 7, < (1/2)?V3) and 9y < (n/2)4"3) (< 5/2). This means that if [u;| < n7;04Ys)
and |v;| < 7964"3), then by the definition of p, we have p(z,z) < nd/2. Then

B(z,nd/2) C B(z,19). (1.2.25)
Then ([.2.21), (1.2.24) and (L.2.25) imply (L.2.9). 0

Lemma 1.2.4. Suppose for some §, (1.2.12) holds for Iy, Iy. For the above 11 and ns. If
In;| < (120)*V3) | then it holds that

By, (x,z,m20) C By, (x,0,md) C Br,(x,2,9). (1.2.26)
Proof: It is obvious from the above proofs for the relations of metric balls. O

Proof of Proposition[1.2.3(1): For x € K, taking I, satisfies (L.2.16)), from the defini-
tion of exponential mapping, we know that the mapping

(g, s up) = @y(u, - uy) = exp(u-U+v-V)(x) (1.2.27)

is globally one to one if z € K, |u| < dp and |v| < do, where K is a compact subset of W
containing x. In particular, it follows that the image of any simply connected set is simply
connected.

Choosing a sequence of n-tuples Iy, ---,I; and 69 > 61 > --- > & > 0 so that for
0j41 <0 <90, 0<75 <11,

1
A, (z)]6405) > §|)\J($)|5d(‘])7

and for 0 < 6 < éy,
1
Ar, ()59 > §|AJ($)|5d(J)~
We may clearly assume d(I;41) < d(I;). In particular, no n-tuple occurs twice, and [ is at

most the total number of allowable n-tuples. The choice of the particular n-tuple of course
may depend on .

Let <I>,€1) be the mapping (1.2.27)) associated to the n-tuple I7. If <I>S,1) were not globally
one-to-one on |u;| < (1726)4(Ys) | there would be a line segment L in the box

{u € R™; Juy| < (1m20)"U9)},

which ®" maps to a closed curve in By, (x, z,m20), where z = exp(v - V)(x). However,
this curve can be deformed to a point in By, (x,0,7:0) and hence by Lemma it can be

deformed to a point in By, (z, z,6), which is impossible. Thus CIDE}) is globally one-to-one.
By repeating this argument [ times for successive series of N-tuples I;11 and I;, we can
prove that the mapping @, (u) is globally one-to-one for |u;| < (118)4Us). O

1.3 Weighted Sobolev Spaces and Embedding

1.3.1 The Spaces Hy?(Q) and S%*(0Q)

Let a system of vector fields X = {X1, Xo, -, X, } defined on a open bounded domain
Q with smooth boundary 92. Then, for k € N, 1 < p < 400, we define

HEP(Q) = {f € LP(Q) | X7 f € LP(Q), V|J| < k}, (1.3.1)
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where J = (jl,"' 7jl) with 1 < ji < m, X‘] = leXj2Xj3 ¢ X,

Ji—1**J1 |J‘ = [. Also we
define the norm in Hf(’p(ﬂ) to be

1/
1A iy = (D2 IXT AR 0) "

[J|<k
We also denote by H%(Q) = HQQ(Q)
Theorem 1.3.1. For k€ N and 1 < p < 400, then the space Hf(’p(Q) 1s a Banach space.

Proof: Let J = (ji, - ,js) with 1 < j; <mfori=1,---,s and denote by X”* the adjoint
operator of X7. Then

HYP(Q) ={f € LP(Q) | 3 gs € LP(Q) such that

1.3.2
/Qf.XJ’*godx:/Qngpdx, for any ¢ € C3°(Q), |J| < k}. ( )

Suppose {u;} to be a Cauchy sequence of Hf(’p(Q), then {X7u;}, for | J| <k, are all Cauchy
sequence in LP(£2). Hence there exists uy € LP(2) such that X7u; — uy in LP(Q2). On the
other hand

/qu‘]’*npdx = / X7 ujpdr, Vo € C5°(Q), |J| < k.
Q Q

Let 7 — oo, we have that there is ug € LP, such that

/ up X pdr = lim | X7ujpdz, Vo € C5°(Q), |J| <k,
Q

J—00 O

which proves ug € HY?(€), X7ug = uy and |ju; — u0||H§,p(Q) — 0. O

Now we denote by H;%(Q) the closure of C§°(2) in HEP(Q).

Definition 1.3.1 (Characteristic and non-characteristic). If L = 32, < aa(z)Dg is a
linear differential operator of order k on Q C R", here DY = Dg}---Dg™ and D,, =
%15‘%.. The characteristic form of L at x € € is the homogeneous polynomial of degree k
on R™ defined by

Xo(,8) = > aa(@)s*,  (S€R™).

|| =k

A nonzero vector £ is called characteristic for L at z if xr(x,&) =0, and the set of all such
& is called the characteristic variety of L at x and is denoted by Char,(L):

Chary(L) = {£ #0: xp(z,£) = 0}.

A hypesurface S is called characteristic for L at x € S if the normal vector v(zx) to S at x
is in Chary(L), and S is called non-characteristic if it is not characteristic at any point.

Theorem 1.3.2. Fork € N and 1 <p < +o00, if IQ is C* and non characteristic for the
system X, then H;%(Q) is well-defined, and a Banach space.
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Proof: For simplification, we only prove the case k = 1, and for k # 1, the proof is similar.

For the well-definedness, we need to prove the existence of trace for v € H)l(’p (). We
know that the trace problem is a local problem, so after the localization and straightened,
we transfer the problem to the case : v € LP(RY), 0,,v € LP(R?}) with support of v is a
subset of {|(z',zn)| < ¢,z, > 0}, of course we can take the smooth function approximate
to v, then we have

vz, x,) — v, c) = / ratv(a:’,t)dt,
c
which proves that
||U(~7 xn)HLp(Rn—l) < C||6a;n’UHLp(Rnfl), (1.3.3)

for all 0 < z,, < c. This shows that the trace v(z’,0) € LP(R"1).
We shall prove now H;(%(Q) is a closed subspace of Hy"(€). Let {v;} be a Cauchy

sequence of H;(%(Q) Since it is also a Cauchy sequence of H)l(’p (€2), there exists a limit
vy € H)lgp(Q)7 and so it suffices to show that v|pq = 0. Applying (1.3.3)) to v; — v, we have

v (+,0) = vo(+, 0)[| Lo (mn—1) < €[|Ox,, (vj — Vo) || Lo (®n-1),

which implies [[vo(-,0)||L»®n-1) = 0. We have proved that H)l(pO(Q) is a Banach space. [

Example 1.3.1. If X = (0z1,- -+ ,0Tp_1,210x,) defined on a ball By, in R™ with {x; =
0} N OB, # @. Then we can verify that OBy, is non-characteristic for X.

If X ={Xy,Xs, -, X} satisfies Hormander’s condition on a bounded open domain 2
with Hormander index @) > 1, then for 0 < a < 1, we define
5(9) = {f € C(9) N L= [flag = sup LD —TWN |y (13.4)
eyen  P(T,y)*
where p(x,y) is the sub-elliptic distance.
For k € N,0 < a < 1, we define
Sh(Q) = {f € S¥(Q); X/ f € S(Q),V|J| <k}, (1.3.5)
where S9(Q) = C(Q) N L>(Q). Set
[uro=suwp [XTu(@)], [upeo= sup [Xu(z)]aq.

2€Q,|J|=k |J|=k

We define the norm in S*(Q) by

k

lullstaqe) =D luljo + [Wkag.
§=0

Replacing © by  in (1.3.4) and (1.3.5), we can also define S*(Q2) and S*<(Q).

Lemma 1.3.1. Let X satisfy Hormander’s condition on Q. Then
5%(Q) € C*2(Q) and S*¥°(Q) C CF,, ().

for0<a<1andk €N, where C* is the usual Hélder space, Cfip(Q) is the Lipschitz space
and @ is the Hormander index of X on €.
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Proof: It is obvious by the definitions of S*(Q2), S*@°(Q) and the result of Proposition
21 O

Remark 1.3.1. From Lemma|l.5.1, we know that

Sk Q) c c*+/Q(Q), forkeN and 0 < o < 1.
Similarly, we can also have

Sk Q) c c*+/Q(Q), for ke N and 0 < o < 1.

Theorem 1.3.3. For k € N and 0 < o < 1, the space S*(Q)(S%2(2)) is a Banach space.

Proof: For k = 0, we assume that {f;} C S*(2) is a Cauchy sequence. Thus || f;[|s(q) <
M < +4o00. Using Lemma {f;} € S*(Q) is equicontinuous, so there exists fo € C(2)
such that f; = foin C(Q). For 0 < a < 1,2 # y,x,y € Q, we have

[fo(z) = folw)l _ |fo(x) = fi(=)] L [fi(@) — fi(y) . |fi(y) — fo(y)|
plxz,y)* = plz,y)* p(z,y)> p(z,y)> (1.3.6)

That proves fo € S*(Q). For k = 1, similarly we have f,, — fo € C(Q) and X, f,,, — fj in
C(Q). Here fy and f; € S*(Q). Thus we need to prove fj(z) = X;fo(z) for all z € Q. If
Xj(z) =0, then X f,(x) — f;(x) = X;fo(z) = 0. Assume now X;(z) # 0, and denotes by
¢(t) the integral curve of X; with ¢(0) = z, then for small [¢],

nmmfmwmzﬁ&mwm@

Because f,,, and X} f,, are all uniformly convergent, we have
t ~
fale(®) = (o) = [ F(os)is
So (d/dt) fo(¢(t))li=o = f;(x), but (d/dt) fo(d(t))|i=0 = X, fo(x), which proves X;fo = f;.
The general cases can be proved in the same way. O

Proposition 1.3.1 (Interpolation inequality). Suppose j+8 < k+«, j,k €N, 0< a,8< 1
and u € S**(Q). Then for any e > 0, there exists a constant C. = C(e, j, k,Q) such that

ullss.8(0) < ellullska) + Cellull L= ()
Proof: It is sufficient to prove the following interpolation inequality for seminorms:
[ulj5.0 < elul,a,0 + Ccllu] L= (o) (1.3.7)

We prove (1.3.7) by induction, and suppress the index (2, take d > 0 small enough, such
that
Qq ={x € Q;p(x,00) > d} # 0.

(a) Let j =1,k =2, « = 8 =0, we need to prove

[ulr < elul2 + Ccllul| L (q)- (1.3.8)
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By definition [u]y = sup; sup,cq | X;u(z)|. For u € S*(Q) fixed, there exists jo, and z9 € Q
such that [u]; = |Xj,u(zo)|. Let p € (0,1/2) to be chosen; we first consider the case
B(zo, ud) C Q. For [u]; # 0, we have X, (zo) # 0. Let ¢(t) be the integral curve of X,
with ¢(0) = zg, take ud > 6 > pd/2, such that ¢(d) = x9 € B(xg, ud). Then

u(zo) — u(w2) = u(p(0)) — u(p(d)) = Xjou(p(0))d.

Let () = € B(xp,d). Then
4
| Xjou(@)| < fu(zo) — u(x2)|/6 < EW\O-

On the other hand, there exists ¢; € Ca(ud) such that ¢1(0) = 2 and (1) = Z, hence
Xjou(wo) = Xjou(r) = Xjou(p1(0)) = Xjou(pi(1))

- / S 0y (1) (X ul(r (1))t

So
4 m
| Xjou(zo)| < m\ub + Mdzsug | X5 X, u(y)l.

j=1Y€

Take p > 0 small enough such that pudm < e, we have proved ((1.3.8)) in the case B(xq, ud) C
Q.

For the case p(zo, Q) < pd, we consider B(x1, pd) C Q, where 21 € Q,q N B(zo, pd). If
X, (1) =0, we have

1 m
Xjgutan) = Xjgutar) = [ 300,03, (Xguter(0))at,

hence,
| Xjou(zo)| < pd Y sup | X; Xou(y)| < pdmlul.
=1 S
If Xj,(z1) # 0, as above, there exists # € B(x1,ud) such that | X ,z)| < %Mo and
p(Z, o) < 2ud, then we can obtain (1.3.8]) as above.

Let j = k = 2,8 = 0,0 > 0, and u € S>*(Q). By definition we have [u]y =
sup;; Sup,eq [ XiXju(r)| = |X;,Xj,u(xo)|- As in point (a), we consider only the case
zo € Qua. Assume that X; (z9) # 0 and X, u(zo) — Xj,u(zre) = X;,X,,u(Z)d with
20, T € B(z1, ud) and pd > 6 > (pd)/2. Then

‘Xioonu(j)l <
and so
| Xio Xjou(wo)| < | Xig Xjou(®)] + | Xig Xjou(wo) — Xig Xjou ()]

< %[uh + (ud)*[u]2,q-

Using (a) we have proved [u]z < efu]z o + Ce|ulo with & = 2(ud)®.
The other cases are similar. O
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Here, we give the proof of Theorem [1.1.2

Definition 1.3.2 (Operator of type \). Let A > 0, T is called an operator of type X, if it is
defined by a distribution kernel T'(xz,y) which satisfies the following estimate

| XT (2,y)| < Caplz,y)*™ | B, plz,y))| " (1.3.9)

Proposition 1.3.2. Suppose T is an operator of type 1. Then T maps LE() to W1/ @2(Q),
here LE(Q) = {u € L*(Q);ulon =0, a.e.}.

Proposition 1.3.3. For all f € C§°(QY), there exist operators To, Ty, -+, Tm, of type 1,
such that .
fl@) =Y TiXif(x) + Tof(x). (1.3.10)
i=1

Proof of Theorem [1.1.2: For u € H (), we know u € LE(Q) and X;u € L(2). Then
from Proposition and Proposition we have u € W1/@2(Q). O

The proof of Proposition [I.3.2] is similar to the proof of Proposition [I.3.6] below, and we
shall give a brief proof later (one can also refer to [19] and [51] for the detail proof).
The proof of Proposition depends on the following result:

Proposition 1.3.4 (Fundamental solutions). If the real smooth system of vector fields X =
{X1, Xo, -, X;n} satisfies Hormander’s condition on a open bounded domain 2, then there
exists a distribution function G(x,y) for (z,y) € Q x Q satisfying

LG(z,y) =Y _ X7G(x,y) = 6. (y), (1.3.11)
i=1
i.e. for any f € L*(Q), we define u(z) = [, G(x,y) f(y)dy, then it holds that Lu(z) = f(z).
Moreover, G(x,y) satisfies, for all (x,y) € Q x £,
G(l'vy) = G(y,.’E), and |Xj1 o X]gG(.’E,yN < Csp(x7y)2is‘B(xap(l'vy))|71' (1312)

Remark 1.3.2. The proof of Proposition|1.5.4) is omitted here, and one can refer [52] for
the details. Also, (1.3.9) and (1.3.12) show that G(x,y) is the type 2 and X;G(x,y) is the
type 1 for j=1,--- ,m.

Proof of Proposition [1.3.3 From (|1.3.11]),

N Z/QT”(Ly)Xi(w)f(y)dy +/QT0($»y)f(y)dy (1.3.13)

where T;(2,y) = Xi(z)G(z,y) and To(z,y) = 327, [X;(2), Ti(2,y)]-
Next, by the definition of type of A > 0 and the properties of the fundamental solutions
G(z,y), it is obvious that operators Tg, T4, - -+, T, are type 1. O
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1.3.2 Weighted Sobolev Embedding

Theorem 1.3.4 (Weighted Sobolev embedding theorem I). Let §2 be a bounded open domain
of R™. Assume that X satisfies the Hormander’s condition on Q. Then, we have the contin-
uous embedding Hf(%(ﬂ) C WHQ2(Q) for allk > 1, p>1 and there exists C = C(p,Q, Q)
such that

||U||W’“/Q~P(Q) < CHUJ”H;P(Q)a

for allu € Hfg_%(ﬂ), where Q) is the Hormander index of X on Q and W*P(Q) is the usual
Sobolev space.

Lemma 1.3.2. Suppose T is an operator of type \. Then T maps L§() to WN@P(Q),
1 <p < +o0, here LE(Q) = {u € LP(Q); ulsq =0, a.e.}.

Remark 1.3.3. Proposition|[1.3.9 is the special case of Lemma[I.53.3 for A\ =1 and p = 2.
The detail proof of Lemmam can be also found in Theorem 12 of [51)].

Proposition 1.3.5 (Representation theorem of H;p(ﬂ)) For all f € Hf(’p(Q), there are
Tw, which are the operators of type k, such that

fl@) =" TuaXf(x). (1.3.14)

|| <k

Proof of Theorem [1.3.]): For all u € Hf(’%(ﬂ), then X*u € LE(Q) for all |a| < k, then

from Lemma and Proposition we have u € W/ QP (). O
Proof of Proposition [1.53.5: Suppose the function a(z) € C§°(R™). Similar to the proof
of Proposition there exists operators Ty, Ty, ---, T, of type 1, such that for any
f e g (R™),
m
a(z) f(x) = Y Ty X;f(x) + Tof (). (1.3.15)
j=1

1
Then taking an open covering {€;}!_; of Q, and a; € C§°(£;) with Z ai(r) =1 for x € Q.
i=1
Then we have

ai(z) f(z) = ZT;Xjf(x) + Tef(z) in Q. (1.3.16)

Hence for any f € C*(Q), f(z) = S T X f(x) + To f(x), where Tj = 22:1 T}, j =
0,1,---,m are the operators of type 1. Since C*°(£2) is dense in H)l(’p(ﬂ), then

f(z) = iTijf(x) + Tof(x), for all f € HP(Q). (1.3.17)
j=1

Thus we have proved the proposition for kK = 1. Suppose that it is true for &k — 1, we need to
prove the result in case of k. Taking f € H5P(Q), we have X f € HyP(Q) for all |a| < k—1.
Therefore

m
f= ) TuXf= ) Tu(D T;X;+To)Xf, (1.3.18)
la|<k—1 la|<k—1 j=1

where T, 7}, j = 0,1,--- ,m, are the operators of type k. The proof of Proposition is
completed. O
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Corollary 1.3.1. Let Q be a bounded open C*° domain of R™. Assume that X satisfies the
Hérmander’s condition in Q. Then we have continuous embedding

LTLQp/(Qn—kP)<Q)’ for kp < nQ,

k,p
HX,O(Q) C {Cm(Q), fO’f’ k;/Q—n/p>m20’

where Q is the Hormander index of X on €.

Proof: This is direct result by Theorem [1.3.4] and the classical Sobolev embedding in
WkP(Q). O

Remark 1.3.4. Comparing Corollary[1.3.1) with the classical embedding
WEP(Q) c L/ k) (Q) for kp < n,

we only replace n in the classical Sobolev embedding by n@ in Corollary|1.53.1. In fact, this
index is not optimal. Next, we shall give the optimal embedding results. Follow Definition

we have

Theorem 1.3.5 (Weighted Sobolev embedding theorem II). Suppose that X satisfies the
Hormander’s condition and the Métivier condition. Let 1 < p < 400, then
(1) if kp < v, then H?gp(Q) is continuously embedded in LVP/(V=FP)(Q), i.e.

H;?P(Q) c L/ v=kp) (), (1.3.19)

where v is the Métivier index of X on 2. B
(2) If kp > v, then H;%(Q) is continuously embedded in SH*=V/P)=H(Q), where

I =[k—v/p]=max{j e N*;j < [k —v/p]}.

Remark 1.3.5. Observe that Q@ +n —1 < v < @n, here n is the topology dimension of €1,
Q is the Hormander index and v is the Métivier index of X on Q. Thus kp < v implies
Qnp/(Qn — kp) < vp/(v — kp). That means the result of Theorem m is sharp than the

result of Corollary|1.5.1].

Remark 1.3.6. Let 1 < p < +oo. Ifkp < v and 1 < q < vp/(v — kp), then similar
to the classical Sobolev compactly embedding (cf. [14)]), we can prove that the embedding
H%P(Q) — L9(Q) is compact.

Proposition 1.3.6. Assuming that T is an operator of type A > 0, if 0 < Aq < v, then
T : L1(Q) — LP(Q) is continuous, where 1/p=1/qg— X /v >0 and 1 < p,q < +0o0.

Proof of Theorem[1.3.5(1): For all u € Hfgp(Q), then X*u € LP(Q) for all |a] < k,
Proposition [1.3.5| and Proposition [1.3.6{imply u € L*?/(*=kr)(Q). O

Proposition 1.3.7. Suppose that T' is an operator of type X > 0, if v < Aq, then T :
LE(Q) — S*v/9(Q) s continuous.

Proof of Theorem [1.5.5(2): For u € H;%(Q), then X%u,u € L§(Q), |a| < k. Using
(1.3.9) and Proposition for all v < kp, we have u € S¥—v/P(Q) = SLk=v/P)=L(Q),
where | = [k — v/p] = max{j € N*;j < [k — v/p|}. This proves Theorem ). O

In order to prove Proposition [[.3.6] we need to introduce the following results.
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Definition 1.3.3 (Weak LP(Q),u) space). Let (2,%,u) be a measure space, and f be a
measurable function with real or complex values on Q. The distribution function of f is
defined fort > 0 by

M) = pdo € 9 (@) > 1}
Then the function f is said to be in the space LP*(Q, ) (the weak LP(, 1) space) with
1 < p < oo, if there is a constant C > 0 such that, for all t > 0,

b
Af(t) < -

The best constant C for this inequality is the LP" -norm of f, and is denoted by
1
[fllpw = sup EAF (£).
t>0

Remark 1.3.7. LP(Q,u) G LP"(Q,p) with 1 < p < co. [t is obvious by definition that
LP(Q,u) C LPY(Q, ). Next, by direct calculations, the function ﬁ € LY (R), but ﬁ ¢
L'(R).

The proof of Proposition depends on the following lemma.
Lemma 1.3.3. Let k be a measurable function on Q x Q such that, for some r > 1, k(z,y)

is weak L" uniformly in x and y respectively. Then the operator Af(x) = [, k(z,y)f(y)dy
s bounded from L9 to LP whenever 117 = % + % —landl <q<p<oo.

Proof: This is Proposition 15.3 in [19], we omit the proof here. O
Proof of Proposition [1.3.6: For p(z,y) is small, (L.3.9) implies |T'(x,y)| < Cp(z,y)*~".

On the other hand, since €2 is compact, then from the doubling property we can deduce that
|T(x,y)| < Cp(x,y)}~" for all z,y € Q.

Next, we can calculate that T'(z, y) is weak L/ (*~2)(Q) uniformly in = and y respectively.
Specifically,

Ar(t) = iz € Q[ T(w,y)| > )
<u {x €0 pla,y) < (1/t)1/<H>} (1.3.20)
< o1/t =,
Then sup,~ t)\gf)‘)/y(t) is bounded.

By using the result in Lemma with r = v/(v — A) > 1, we can then complete the
proof of Proposition O

Now, let us give a proof for Proposition [1.3.2

Proof of Proposition[1.53.2: Denote A = Op{< £ >}, then from Hérmander’s condition
we have A =}, .o @aXa (here @ > 2 is the Hérmander index of X). Thus

ITullwrsezo) < C Y I1Xa/“Tullrz 0.
o] <Q

From the definition, we know the operator Xol/ 9T is the operator of type 1 —1/Q. Thus

we choose p = % > 2, then % =3- Qlel (here v is the Métivier index). By Holder

inequality, one has

IXY 9T )32y < IIXY Tl o) - | X3 OTull Lo(q),
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where g = p’%l € (1,2). Since § is bounded, then we have
| Xa/9Tul ) < C1l| XY Tul 12(q).-
Thus, from the result of Proposition [I.3.6] we can deduce that

ITullwirazo) <C Y I1Xa/ 9T ullr2(a

la|<Q
<C» Z ||X,i/QTU||Lp(Q). (1.3.21)
lo|<Q
<CsllullL2(a)
The proof of Proposition [1.3.2]is completed. O

Proof of Proposition[1.53.7: Since the problem is local, we can first suppose that g €
L%(2) and supp g C B(xo, R) CC Q. Then Tg(x) = [, T(z,y)g(y)dy. Now for z,2’ € Q,
p(z,x’') = § < 1, there exists £ € Q such that p(&, z), p(§,2") < . Then we have

(T ) - T(a, ' )g(w)dy + / reay T = TG )gw)dy

Ty(w) - Tg(w') = [

B(§,36)

Since sub-elliptic distance p and the C-C distance d; are equivalent. Then there is «(t) €
C3(26), such that

a(0) =z, a(1) =2’ and p(z, a(t)), p(z’, a(t)) < 24,

for all 0 <t < 1. Thus
T(x,y) = T(2',y) = Z/O a; (1) X; ()T (alt), y)dt,

with |a;(t)] < 24,5 =1,2,--- ,m. We have also, for y € Q\B(&, 39), p(a(t),y) > 6 = p(z, '),
and B(€,36) C B(x,46) N B(z',46). Hence

|Tg(x) —Tg(z)| < C p(x, y) Bz, p(x,y)| " g(y)|dy
B(z,49)

+C p(@' )M B, p(a’,y))|Hg(y)ldy
B(a' 45)

1 1
/ A1 -1
e / dt /Q gy P / plalt), y)* | Bla(t), plalt), v)~ lg(w)ldy
=11+ 1)+ Is.

The estimates of I; and I are similar:

e/ .
I SCllglqu(g)(/ pl, ) A~/ @=D) gy a1/
B(x,46)

)/ (g— (a1
SC||9||1:<I(Q)(/B )p(x,y)(qA )@= B(z, p(z,y))| 1)(«1 )/qdy

(x,46

< C6*|g|| Loy
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For I3, we have

1
I3 < Cp(a:,ar’)/ dt/ p(a(t),y)* ¥ |g(y)ldy
0 O\ B(z,35)

1y _ 1
SCp(m,fc’)(/ pla,y) A= 1al =gy =D g o
0<p(z,y)<2R

< Cpla, zz)prlqu(qfl)/q||g||Lq(Q)
= C* 1 gll Lo

We have proved Tg € S*~¥/9(Q). For ¢ € Q and supp g C B(xg, R) N €, similar to the
estimates above, we have analogous results. O

From Definition for general cases, we have

Definition 1.3.4. We define

v= r;lg&(y(z), (1.3.22)

as the general Métivier index on Q.
Remark 1.3.8. [t is obvious that v = v if X satisfies the Métivier’s condition on Q.

Remark 1.3.9. For more general vector fields X, the result of Theorem[1.3.5 would be also
hold if we use the general Métivier index U to replace the Métivier index v. In this case the
corresponding Sobolev critical exponent in Hff’p(Q) would be Up/(v — kp).

1.4 Boundary-Value Problems

1.4.1 Bony’s Maximum Principle

Let

m

L= ZX?(JU) + Xo(x) + c(x),

Jj=1

where { X}, are real smooth vector fields and c(x) < 0 is a C* function defined on Q.

Theorem 1.4.1 (Bony’s maximum principle I, cf. [5]). Suppose that u is a C? function
defined on ), satisfying
Lu > 0.

Let Z € X(X1,...,Xm) be a vector field and T a integral curve for Z. If u attains its
non-negative mazimum at a point in I', then u is constant within T.

Corollary 1.4.1 (Bony’s maximum principle IT). Let the system of vector fields X satisfy
the Hormander condition on . If u € CQ(Q) and Axu > 0, then u can not take its
mazimum on interior points of ) expect that it is constant on the connected component of
those points.

Proof: This is the direct result from Rashevski-Chow’s connectivity theorem (i.e. Theorem

1.2.1)) and Bony’s maximum principle I (i.e. Theorem [1.4.1]). O
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Remark 1.4.1. The operator L in Corollary[I.].1] can be “very degenerate” at each point.

For example, (denote the coordinate as (xg,x1,--- ,x,) in R ):
0? 0 0 0 \2
L=2_ AT AT A b

8:1:% + (wo 0x1 0 0xo te T 3xn)

In order to prove Theorem we need the following propositions and lemmas.

Proposition 1.4.1. Assume § is an open subset of R™ and F is a closed subset of €.
Suppose that the vector fields X (x) is Lipschitz in  and is tangent to F. Then every integral
curve of X which meets F at a point is entirely contained in F.

Remark 1.4.2. The proof of Proposition|1.4.1|is similar to the classical proof of the Cauchy-
Lipschitz uniqueness theorem for the solutions of ordinary differential equations.

Proof of Proposition [1.4.1: We shall use the contradictive method. Suppose that these
exists an integral curve x(t) satisfying 2’(t) = X (z(t)), meeting F but not contained in F.
We can then find an interval [tg, 1] such that

l‘(to) =X € F and .Z‘(t) € F for t E]to,tl].

Next, we have two claims (here we omit the proofs).
Claim 1: Let §(¢) be the distance of x(t) to F. There exists a positive constant K such
that, for ¢ €]tg, t1], we have

lim inf Ot + 1) = o(t)

pint = = > K1),

Claim 2: Let f be a continuous function on an interval and satisfies, for every ¢ in this
interval, that

t+h)— f(t

liminf—f( +h) = ()

> M with M >0,
h—0 ||

then f is Lipschitz and its Lipschitz constant is M.
Finally, let

1
6 = min (¢ — to, ﬁ)’ and e =supd(t) for t € [to,to + 0.

From the above two claims, the function ¢ is Lipschitz of constant Ke in [tg,tg + 6]. Then
d(t) < O0Ke < e/2 for t € [to,to + 0], and this is a contradiction. O

Proposition 1.4.2. Let Xy, ..., X, be the C™ class vectors fields and Z € X(X1,...,Xm).
Then every integral curve of Z can be approached uniformly by piecewise differentiable
curves, whose each differentiable arc is an integral curve for one of the vector fields X;.

Remark 1.4.3. To prove Proposition[I.].2, we need the following lemma. For more details,
one can refer to [5].

Lemma 1.4.1. Let 2(t) be the solution of
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On the other hand, let y(t) be a Lipschitz function satisfying almost everywhere that

Z(y(t) +w(t),

——
SRS
[N
S =
1]
8

o

Then £ e
() — y(0)] < (M0 1),

where € = sup |w(t)| and M is the Lipschitz constant of Z.

Proposition 1.4.3. Let ) be an open set of R™ and F a closed subset of Q2. Let Xy,..., X,
be the C*° class vector fields in €, and each of them is tangent to F. On the other hand,
assume Z € X(X1,...,Xm). Then, Z is tangent to F, and every integral curve of Z which
meets F' at a point is entirely contained in F.

Proof: In fact, Let ' be an integral curve of Z, passing the point x¢ € F. We can approach
it by piecewise differential curves, each arc of which is an integral curve for one of the X;.
From Proposition these curves are contained in F', i.e. I' C F. The vector field Z is
then necessarily tangent to F. In fact, if there exists a sphere which is outside of F' and
meeting F' only at one point x, and if the normal vector of the sphere at this point is not
orthogonal to Z(z), then the integral curve of Z, passing by z, will go through in the sphere
and will not be contained in F' anymore. O

Proof of Theorem |1.4.1): Theorem can be deduced by Proposition Proposi-
tion and Proposition One can find the details in [5]. O

1.4.2 Linear Case

We consider
—Axu(z) = f(z), inQ, (1.4.1)
u(x) = 0, on 89,
where Q is a bounded open domain of R™, the real vector fields X = {X1, Xo, -+, X} is

C° and satisfies Hormander’s condition on Q. 0 is C* smooth and non-characteristic for
the system of vector fields X.

Proposition 1.4.4 (Poincaré inequality). Suppose 9 is C*° and non-characteristic for
X, then the first eigenvalue \1 of Dirichlet problem for —/Ax is positive and we have the
following Poincaré inequality

Ml < [ [XuPde, Vue ik (@),

Proof of Proposition [1.7.): We set

A= inf Xo||? .
L ol tirey oo Pl

Suppose that A\; = 0. Then there exists {¢;} C Hx ((Q) such that [[Xg;|l2) — 0

and || X¢;||r2@) = 1. By the Sobolev embedding (see Theorem [1.3.5] and Remark [1.3.6)),

H}(,O(Q) is compactly embedded into L?(Q2). The variational calculus deduces that there

exists ¢ € H}QO(Q), 18l o) = 1, @ > 0 satisfying

Ax@ =0, | X@lr2) = 0.
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The Hormander’s theorem of square sum (Theorem [1.1.1)) implies that A x is hypoelliptic
in 2, and then we have ¢ € C*(Q) and

X;jp(x)=0,Vze, j=1,--- ,m.
This implies that ¢ is constant along the integral paths of vector fields of X1, , X,,. Now
Rashevski-Chow’s connectivity theorem (Theorem [1.2.1)) implies that ¢ is constant on each
connected component of €.

Since 91 is non-characteristic, by taking zo € 0§}, then there exists a X; such that if

X ;¢ = 0 we have @(x) = 0 near o, which means @(x) = 0 on . This is impossible because

|@]l22(qy = 1, so we prove finally A; > 0. O

Definition 1.4.1. (1) The bilinear form B[, | associated with the operator —Ax is
Blu,v] := /Qinquvdx, Jor u,v € Hy ().
j=1
(2) We say that u € H}(’O(Q) is a weak solution of the boundary-value problem if
Blu,v] — /vadx =0, Yv e H}QO(Q). (1.4.2)

Theorem 1.4.2 (Existence). If f(x) € L*(), then there is a weak solution of (1.4.1))
1,2
u(z) € Hy () -

Proposition 1.4.5 (Lax-Milgram Theorem, cf. [14]). Assume that
B: HxH—R
s a bilinear mapping, for which there exist constants o, B > 0 such that
Blu,v] < allullul|vllm, (u,ve H)

and

Blu,u] > Blluly, (u€ H).

Finally, let f : H — R be a bounded linear functional on H. Then there exists a unique
element uw € H such that

Blu,v] =< f,v >, for allv € H.
Proof of Theorem [1.4.2: First, by direct calculations, we have
Blu,o] < Jull g oy llvllry oy amd Bl ] = ullyy g for all u,v € H o)
Then Proposition m (Lax-Milgram Theorem) implies the results of Theorem m O

Theorem 1.4.3 (S%(Q) regularity). If f € S¥*(Q),0<a <1, k€N, ue H}(7O(Q) is a
solution of —Axu = f, then u(z) € S¥+2.2(Q).
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Let u € C(Q) be a weak solution of the problem —Axu = f, then u = u; + us such that
Axuy; =0, in Q, (1.4.3)

and

ug () = . Gz, y)f(y)dy, (1.4.4)

where G(z,y) is the fundamental solution of —A x (See Proposition|1.3.4). The Héormander’s
condition implies that u; € C*°(Q). Then for any K CC Q, and k € N, there exists a
constant D = Dy, which depends on K, k, X and |u1|r=(q) only, such that

|u1llsx(ry < D

Proposition 1.4.6. Let f € S*%(Q), with supp f € By = B(xo, R), and u € C(Q) be a
weak solution of the problem —Axu = f. Then

lullsit2.0(8,) < Di + Cll fll k.0 (By) (1.4.5)

where Dy, C' are the constants independent of f.

Proof: It is sufficient to prove that for f € S%(Q) with supp f € B; = B(zg, R), then

[uzlls2.e(By) < Cllfllsa(By)- (1.4.6)

Step 1: Prove that us € S1(B;) and

Xjus(x) = X;(x)G(z,y)f(y)dy,j =1,2,--- ,m,z € By, (1.4.7)
B
and |Xju2\0731 < CR|f|0,Bl.
Step 2: Prove that us € S?(B;) and

XiXjuz(x) = [ Xi(x)X;(2)G(z,y)(f(y) — f(x))dy + f(x)/ GG (z,y)dy, x € B,
By B(z0,2R)
. (1.4.8)
for j =1,2,---,m, where G (z,y) = X;(x) X, (2)G(z,y) satisfies the estimate (1.3.12).
Step 3: Prove that uy € S?%(By).
In fact, for z,T € By, set 6 = p(x,T), and take £ € B; such that p(x,&), p(Z,€) < §/2,
then for i, =1,--- ,m, we have

Xin’LLQ(x) — XZX]’ZLQ(i')

:/ XiX;G(z,y)(f(@) - f(y))dy + / X, X;G(@,y)(f(@) - fy))dy
B(&6) B(£5)

+ / (X, X,G(2,y) — X:X;G(e,9)(F() — F(@))dy
B1\B(&,6)

+/ XiX;G(z,y)(f(x) — f(x))dy + (f(x) — f(f))/ Gy (z,y)dy

B1\B(§,9) B(z0,2R)

+ f(f)/ (G§ (z,9) — G (T, y))dy = I) + Lo + I3 + I + I5 + L.
B(z0,2R)

where G(z,y) = ¢(2)G(z,y)d(y) and ¢ € C§°(B(z0,2R)) with ¢(x) = 1 on B; and | X7 ¢| <
Cy/R!.
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Next, we can deduce that (here we omit the proofs)

|Ii|SC'5a[f]X fori=1,---,6.

«,B1>
Then
XX s () — XiXjua(2) < Cpla, )°[f1

a,By>

for ,z € By, with C depending only on «, n. This completes the proof of Proposition [T.4.6]
]

Theorem 1.4.4. Let f € S5%(Q) for some k € N, a > 0 and u € C(Q) be a weak solution
of the equation —Axu = f. Then for all xy € QQ, there exists R > 0 such that

_ —r(k+a)
lullsi+z.am,) < Crllfllstes.) + Ck(1fllLe By + lullLe(sy)) ((s — t)R) , (L.4.9)
for all0 <t < s <1, where Cy and Cy, are independent of f.
From [56], we have (see [56], Lemma 3.8)

Lemma 1.4.2. Let p(t) be a non-negative bounded function on [Ty, Ti] with 0 < Ty < Ti.
Assume that for any Ty <t < s < Ty we have

A
(s —1t)8

o(t) < 0p(x) + +B

with 1 >0 >0, A, B, > 0; then we have

o) < C{ 2 + B

for all Ty <t < s < Ty, where C depends on 3 and 6 only.
Proof of Theorem [1.7.]): Using (1.2.3)) we have, for 0 <t < s <1,
dp(0Bs, B;) > C((s — t)R)?,

where B; = B(zo,tR) and dg the Euclidean distance, thus there exists a function ¢ €
C§°(Bs) such that ((x) =1 on B; and

[X*¢lo + ((s = YR) P [X*(IT < Cul(s — t)R) ™, (1.4.10)
for all k € N, where [X*(] = lelzk[XJC].
Let f € S%%(Q) and u € C(Q) be a weak solution of the equation —Axu = f. Then

m

L(Cu) = ¢f = > _2X;¢Xu— Y (X7 ()u.

j=1 j=1
Using Proposition and the interpolation inequality (Proposition [1.3.1), we have

ICullgrsz.a(p,) <Di + Ci{[X*f1X . + e[ X 2] 5.

(1.4.11)
1 g0, (s = )R)=OEH) 4+ Clulo g, (s — ) R) " T},

Then Lemma |1.4.2 and (1.4.11)) imply (1.4.9). O
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Proof of Theorem [1.7.3: We prove the result by dividing the problem into following two
steps.

Step 1, Interior regularity. Since the problem is local, given xy € €2, We only need
to prove u(z) € S**2:%(B(x¢, Ry)) for Ry > 0 small enough and B(zg, Rg) C . Thus the
interior regularity can be directly deduced from the result of Theorem

Step 2, Boundary regularity. In case of xy € 912, similar to the classical Laplacian
equation, we need to use some transforms and then consider the special case only in which
2o € Uand U = QN B(zo,R) = {z € B(zo,R) | 2 > v(x1,-+ ,2_1)}, where « is the
definition function of the boundary near xy. Here the Bony’s maximum principle plays a
crucial role. We omit the proof here and one can refer to [I4] for the more details. O

Similarly, we have

Theorem 1.4.5 (Hy"(Q) regularity). If f € HYP(Q), 1 <p < 400, k€N, u € H)l(zo(Q)
is a solution of —/xu = f, then u(z) € HL >P(9).

Proof: The detail proof of Theorem can be found in [5I], Theorem 16. O

1.4.3 Nonlinear Case

Here we suppose that the real vector fields X = {X1,Xo, -+, X} is C* and satisfies
Hormander’s condition on a neighborhood of €. Then we consider

_ - a j
{ Axu(z) = +u?, in Q, (1.4.12)

u(z) =0, on 09,

where (2 is a bounded open domain of R", 1 < ¢ < (v+2)/(v —2), v is the general Métivier
index of X on Q. 09 is C*° smooth and non-characteristic for X.

Theorem 1.4.6. Assume Ay is the first Dirichlet eigenvalue of —Ax, 0 < A < A\ and
1<qg< (w+2)/(v—2). Then there exists a non-trivial solution u € H)l(,O(Q) of the problem
[2.12).

Proof: We consider the minimization problem
i>\ = inf {/ Z |Xku(g;)|2d1: — )\/ \u(x)|2dx, u e H}(,O(Q), ||U‘HL‘7+1(Q) = 1} (1413)
Qi Q

Since 0 < A < A1, we have iy > 0. Let {u;} C Hx () be a minimizing sequence for

(1.4.13)), i.e., a sequence such that
Ax(uy) = / > [ Xpu;(z)Pda — )\/ [u;(z)2dx — iy,
Q= Q

and [|u;||pa+1(q) = 1. Without loss of generality, we can suppose that u; > 0 (otherwise
we can replace {u;} by {|uj|}). Since {Ax(u;)} and {||u;][pa+1(q)} are bounded, then {u;}
is bounded in Hy ((€2), and there is a subsequence converging weakly in Hx ;(Q) to ug €
H ,(€). By the compactness result of Theorem the subsequence converges in LIT1(Q)
norm, so [|ug||pa+1(n) = 1. By Hélder’s inequality, A [, |u;(2)|*dz — X [, [uo(2)[*dz and so
Ax(ug) < iy. But since i) is minimum, we necessarily have A)(ug) = ix. By a standard
variational argument, ug satisfies

—Axug = Aug + izud,
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in the distribution sense. We have proved Theorem for u = (ix)*/ (@ Vyg € H}(’O(Q).
O

We study now the regularity of the weak solution in Theorem [T.4.6]

Proposition 1.4.7. Suppose that f € L*(R), s > v/2, u € L*/"=2(Q), u > 0, and

—Axu(x) = fu, in Q,
u(z) =0, on 09Q.

Then we have that u is Hélder continuous in Q, and for some B > 0, we have u € S#(Q).

Proof: By Holder’s inequality fu € L%(Q) for 1/gg = (v — 2)/(2v) + 1/s. Theorem [1.4.F]
implies that u € Hy%(Q2), and thus by Theorem 1),

u € LPY(Q), for 1/p1 =1/q0 —2/v = (v —2)/(2v) — (2/v —1/s).
Repeating this argument, we can deduce that
u e LP*(Q), for 1/pr = (v —2)/2v — k(2/v — 1/s) and 1/py, > 0.

Suppose k is the largest possible. Then pj > v/2and u € H)Q(’p’c (©), and so Theorem 2)
gives u € SA(Q) for 0 < B < 2 —v/py. O

Theorem 1.4.7. Suppose that f,g € C*(Q), u € L2/ =2) >0 on Q and
—Axu=gu—+ ful, in Q,

for2<qg< (v+2)/(v—2). Thenu € C>®(Q)NS%A(Q) for some 0 < B <1, andu >0 on
Q.

Proof: Let h = g + fu?™! € L2/(v=2@=1)(Q) then s = 2v/((v —2)(q¢ — 1)) > v/2. Tt
follows from Proposition m that u € S#(Q) for some 0 < 8 < 1 and u > 0 on ). Since
q > 2 and u is bounded away from zero, we also have u? € S%(Q)). Thus, we conclude from
Theorem that u € S%# (). From the Bony’s maximum principle we have u > 0 on Q.
Then in the interior of Q, u? € $%#(Q), so we can repeat this argument in the interior of €2,
and by induction we can deduce that u € C°°(€2), which proves the result of Theorem [1.4.7]
If ¢ € N, we can also obtain u € C>(1Q). O

Next, we consider

{Axu(o:) +a(z)u=wu?, inQ, (1.4.14)

u(z) =0, on 02,

where  is a bounded open domain of R", ¢ = (v+2)/(rv—2) is the critical Sobolev embedded

exponent, v is the general Métivier index of X on (.
For u € Hy ((9), let

I =inf{|| Xu|3: +/ a(z)u?(z)dz;u € Hy o(R), / Ju?/ V=D dy = 1},
Q Q
and
5= inf{/ | Xul?da;u € HY o(9), / |2/ 2 g = 1},
Q Q
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Theorem 1.4.8 (Concentration-compactness principle on C-C space). Let {u;} be a bound-
ed sequence and converges to u weakly in Hy o(Q) and |Xu;|*de — p, |2/ V=D de — p
weakly in the sense of measure where pu and n are bounded non-negative measures. Then

(1) There exists at most a countable set J, a family {z;};c; C Q and {n;,j € J} of
positive numbers such that

n= |u|2u/(l/72)dg; + an(swj.
jeJ
(2) In addition we have
p= | Xul>dx + S’Z 77](-”72)/”6% and Z 775-”72)/” < oo.
JjeJ jeJ

We consider that there exists a > 0 such that
Xl + [ ale)e*@)ds 2 all Xl (1.4.15)

Theorem 1.4.9. Suppose that a(z) € C>() satisfies (L.4.15) and {u;} is the minimizing

sequence of I. If I < S, then {u;} is a relative compactness of minimizing sequence for I
in H}(,O(Q)' Hence there is a minimal element u € H)l(,O(Q)' If I > 0, then there ezists a

constant C' such that Cu is the weak solution of (1.4.14]). Moreover u € C*(Q) N C¥(Q),
for some a > 0.

Remark 1.4.4. The detail proofs of Theorem and Theorem can be found in [2],
in which the technique of micro-local analysis has been used.

1.5 Estimates of Eigenvalues in Finitely Degenerate
Cases

1.5.1 Retrospect: the Classical Cases

Let us consider the following Dirichlet eigenvalue problems in H}(7O(Q),

(1.5.1)

—Axu=Au, in €,
u =0, on Jf).

In the classical case, X = {0y, - ,0u, }, Ox is the Laplacian A.

Proposition 1.5.1 (Weyl’s asymptotic formula, cf. [55]). The k-th Dirichlet eigenvalue for
— A\ satisfies
A ~ Co(k/|Qn)*'™, (1.5.2)

where ||, is the n-dimensional Lebesque measure of Q and Cy, = (277)2352/71 with B, being

the volume of the unit ball in R™.

Remark 1.5.1. Pdlya [[7] proved that the asymptotic relation is in fact a one-sided
inequality if Q is a plane domain which tiles R? (and his proof also works in R™). Also he
proposed following conjecture which is still open.

Polya Conjecture: the inequality

e > Co(k/|Q0)%™, for any k> 1, (1.5.3)

holds for any domain 0 in R™.
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Proposition 1.5.2 (Li-Yau’s inequality, c.f. [36]). The eigenvalues for —A\ satisfy

k

nCp ni2 2
i:Zl)\i > n+2k IZ|Q|n m forany k > 1, (1.5.4)

where |Q|,, is the n-dimensional Lebesgue measure of Q and C,, = (27T)QB;2/" with By, being
the volume of the unit ball in R™.

For the upper bounds of eigenvalues, Payne et al. [46] proved

k
4

“M <Y

Ak41 )\k_nk ¢:1/\1

Further, in 1991, Yang [57] proved a very sharp universal inequality:
k L
Mer1 = 2A)2 < =Y N1 — \).
D ks =) _nz (A1 — A)

i=1 i=1

In 2007, from the above Yang’s inequality and recursion formula, Cheng and Yang [I1]
proved

M1 < k7 Ay, for large k and n.
On the other hand, if there exists a constant cg such that
P |n < o|Q)Y/ ) for every r > |Q[1/™, (1.5.5)

where Q, = {z € Q | dist(z,0Q) < r}. Then Kroger [34] gained that

2

k nC +2 +1
DN < Sk Q"+ Cok (1.5.6)
i=1

n—+ 2

for any k > ¢, where C,, is a constant which depends only on {2 and n.

1.5.2 Asymptotic Estimates and Lower Bounds

Proposition 1.5.3. Suppose the system of vector fields X satisfies Hormander’s condition
on a neighborhood of Q. If 02 is C*° and non-characteristic for X, then the operator —Ax
has a sequence of discrete Dirichlet eigenvalues 0 < Ay < dg < Az3 < -+ < A\ < ---, and
A — 00, such that for any k > 1, the Dirichlet problem

—Axpp = A\por, i Q,
i =0, on 012,

admits a non trivial solution py, € H)1<7O(Q). Moreover, {¢k}r>1 constitute an orthonormal
basis of the Sobolev space H ().

Proof: First, from Proposition [[.4:4] it holds that

(—Axu,u)r2Q) = HXu||2Lz(Q) > )\1Hu||2L2(Q), Yué€ H)lgo(Q), and u # 0.
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Also

(—Axu,v)Lz‘(Q) = (u, —Ax’u)Lz(Q), Vu, DS H;(7O(Q).
Then the operator —Ax is positive definite and self-adjoint on H}(,O(Q)~ Lax-Milgram
Theorem implies that for any g € H;(I(Q), the following Dirichlet problem

—Axu=g, in$,
u =0, on 02,

admits a unique solution u € Hy ,(€2), where H'(Q) is the dual space of H () with the

norm
9l 1) = sup M’
X ¢€C(C))Cu¢7£0 ||¢HH)1(,O(Q)

and —Ax : Hy ,(Q) — Hx'(Q) is continuous. Thus the inverse operator —A%" is well-
defined and is a continuous map from Hy'(Q) to H ,(Q). The compact embedding i:
HY () — L*(Q) and the continuous embedding i*: L?(€2) — Hy' () imply that

K:=-AY oi*oi: H)l(,O(Q) — H)l(,o(ﬂ)

is compact and self-adjoint. Then there exist eigenvalues {n;} of compact operator K such
that g > 0, for k > 1 and n, — 0. If {¢x} are the associated normal eigenfunctions, we have
that K¢ = neor for any k > 1 and {¢x} form a complete basis of Hilbert space H}(’O(Q).
This completes the proof. O

Proposition 1.5.4 (Métivier’s asymptotic formula, cf. [87]). If X satisfies Hormander’s
condition and Métivier’s condition on a meighborhood of 2, then the following asymptotic
result

o ~ kv, as k — 4oo, (1.5.7)

holds, where Métivier index v is defined by (1.2.4]).

For general finitely degenerate operator, by using the sub-elliptic estimate (see Theorem

1.1.2), we can deduce that

Theorem 1.5.1. Suppose the system of vector fields X satisfies the Hormander’s condition
on Q with the Hormander index Q. Let \; be the 4" Dirichlet eigenvalue of the problem

(11.5.1), then for all k > 1,
k
SN > Okt e - C(Q)E, (1.5.8)
j=1

nQR2m© —, C(Q) and CN'(Q) are the constants in Theorem|1.1.9, B,,
C(Q) (nQ+2)(|2|n Brn) @
is the volume of the unit ball in R™, ||, is the volume of Q.

where C1 =

Remark 1.5.2. (1) Since kX, > Z?:l Aj, then Theorem show that the Dirichlet
eigenvalues \ satisfy

Ao > C1k@n — C(Q), for all k> 1.

(2) If Ax = A is Laplacian, then the Hormander index Q = 1, C(Q) = 1 and C(Q) = 0.
Thus for all k > 1, the lower bound estimate (1.5.8]) gives the same result to the Li-Yau’s
estimate (1.5.4]).



1.5. ESTIMATES OF EIGENVALUES IN FINITELY DEGENERATE CASES 35

(3) However, when Hormander index Q > 1, the increasing order of k in the lower bounds
1.5.8) is 2/(Qn) , which is smaller than the order of k in the Métivier’s asymptotic formula
ﬂ That means the lower bounds of Dirichlet eigenvalues in are not precise.
Indeed, one example below with QQ = 2 gives a precise lower bounds of Dirichlet eigenvalues.

Example 1.5.1. For the Kohn Laplacian in Heisenberg group on a bounded Q C R*N+1,
we know that for this example the Hormander’s condition and Métivier’s condition are all
satisfied with Q@ = 2 and v = 2N + 2. Then, Hansson and Laptev [20] and [21)] proved that

. 2m) V(N 4 1)V +2 ~iT
k

1
i fw Hk>1
= V20N (N + 2)N 1|0 , Joraltk 2 1,

~ 1
where On = 320, . ny>0 @i —Fnn) TN)NFT-

Now, let us give the lower bounds of the Dirichlet eigenvalues for another class of finitely
degenerate elliptic operator which are more precise than the estimates (|1.5.8)).

Theorem 1.5.2. Let X = (0p,, -+ ,0x, _,,250,,), | € N, n > 2, Q is a smooth bounded
open domain in R™ and QN {x; = 0} # 0. Then X satisfies the Hormander’s condition
with the Hérmander index Q = 1+ 1. Also the generalized Métivier index v = Q +n — 1.
Suppose A\ be the 4t Dirichlet eigenvalue of the problem , then

k
YN 2 Cn, QK  aF=T — C(Q)k, for all k> 1,
j=1

where
ntQ41

)T (n 4 Q — 1),

B Ag (2m)"
C(n,Q,Q) = CQnn+Q+1) Qnwn—1Q

and .o
min{l,n"z }, Q> 2,

n, Q=1

C(Q) and G(Q) are the constants in Theorem Wn_1 15 the area of the unit sphere in
R™, |Q|, is the volume of Q.

C(Q) =C(Q)+min{l,Q —1} >0, Ag= {

Remark 1.5.3. (1) X = (04,, -+ ,00,_,,2,0,) in Theorem does not satisfy the
Métivier’s condition.
(2) If L = 0, then we have

AX:Aa Q:17 O(Q):la CQZOa AQ:na

and C(n,Q,Q) = #(27‘(‘)2B;%|Q|§. Thus the result of Theorem|1.5.4 is the same to the

result of Li-Yau’s estimate (|1.5.4)).
The proof of Theorem is dependent on the following results.

Lemma 1.5.1. For the system of vector fields X = (X1, -+, Xy,), if {¢; ?:1 are the set of
orthonormal eigenfunctions corresponding to the Dirichlet eigenvalues {\; };?:1. Define

k

U(z,y) =Y () (y).

j=1
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Then for the partial Fourier transformation of U(x,y) in the x-variable,
U(zy) = (2m) "2 [ Wag)e e,

we have

| [ 1y =k ana [ (5P < 2

Lemma 1.5.2. Let f be a real-valued function defined on R™ with 0 < f < My, and if for

QeZr,
/]R (SZ?—H%P/Q)]U(Z)dZSMQ'
"i=1
Then
o 1202 +22 (Mlen1)@(’@)21&1%&3;7

where w,_1 is the area of the unit sphere in R™, and

w mim{l,n¥}7 Q>2,
@ n, Q=1

Proposition 1.5.5. If X belongs to the system of vector fields in Theorem [I.5.3, then we
have the following sub-elliptic estimate

n—1
Z ||8xiu

i=1

2 2
2oy + 100,172}, ) < C@QUX o0y + C@uldae).  (15.9)

for allu € C§°(Q). Where |0,,,|"/? is a pesudo-differential operator with the symbol |€,|*/ @,
C(Q) = C(Q) + min{1,Q — 1} > 0, C(Q) and C(Q) are the constants in (T.1.15).

Proof of Theorem[1.5.2: Let X = (0, ,0u, ,,210s.), {\k}r>1 be a sequence of the
Dirichlet eigenvalues for the problem (|1.5.1), {’l/Jk z)}k>1 be the corresponding eigenfunc-
tions, then {43 (z)}r>1 constitute an orthonormal basis of the Sobolev space Hx ().

Let ¥(z,y) = Z?Zl Y;i(x)Y;(y). By using Plancherel’s formula and Proposition m
we have

n—1
/ / (3 22+ a2, ) Pdyd
»JQ

n—1
= [ (S loav@al +jo..
" i=1

:// (i|8ﬂciq}(zvy)|2+|‘amﬂ,|1/Q\If($,y)|2)dyda:

//\X (@, ) [2dady + O )/Q/Q|\IJ(J;,y)|2dxdy).

1/Q\Il(x,y)|2)dydm
(1.5.10)
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Next, we can deduce that

Jo et pasay = | Z/QIZXl )05 ()05 () P ) dy

Jj=1

- Z ( /Q Z|Xz<x>wj<x>|2)dx (15.11)

Thus from Lemma [1.5.1} (1.5.10) and (1.5.11) give that

n—1 k
| [ (a2 a1 vz < C@3 % + @)
" i=1 j=1
Now we choose

/|\II (z,9)[Pdy, My = (27) ", M = (i )

Then the results of Lemma and Lemma [1.5.2] give that, for any k > 1,

1 Q| nwn—1 . n(@Q+n+1) gt . k _ g1
SiraoiC e )T (T) '(C<Q><;Aj+c<cz>k>) .

This means, for any k > 1,

k
Z (n,Q, Q7T — G(Q)E,
with " (2m)
_ Q 2m)" \wEe _ q)nige
Q) = g (fnsg) | (nr@-DEE,
and

. 3-Q
Q) = C(@Q) +min{1,Q —1} > 0, Ag = {Sm{lm #) a2z

Proof of Lemma : Since

/n U2 (z,y)de = / | (z,y)|?dz.

Hence by the orthonormality of {1;}*_;, one has

Jj=01

/ / (2, y) Pdzdy = / / U (2, )| Pddy = / / U (2, ) Pdedy =
Q n Q n QJQ
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On the other hand,

/ 19, y)[2dy = / em | [ (@, y)e— i du 2dy = / (2m)"| / U(z, y)e= " daf2dy.
n Q R» Q Q

Using the Fourier expansion for the function e~*%, i.e.

711 z __ Z q/)J )’ with a]( ) \/Qe*iz-zd}j(x)dz

Then we know that -
Slas)f = [ e o = [0,
i=1 @

Thus

k

k oo
|/Q\I/(x,y)e*”'zd:c| < |/Q;;az(zwz(m)%(ﬂﬁ)%(y)dx = |;aj(2)¢](y)

Using the estimates above, we have

k

/|qf (z,y)dy < (27) ”/ ZaJ y)Pdy = 2m)™" > a;(2)[* < (2m) Q.
j=1
O
Proof of Lemma[1.5.2: First, we choose R such that
n—1
[+ P51z =
R™ =1
where .
My, Z 22+ 209 < R?,
9(2) = =
0, z:zf—k|zn|2/c2 > R?.
i=1
n—1
Then (Z 22 4 |2,/ 9 — R?)(f(2) — g(2)) > 0, hence
i=1
RQ/ (f(2) — g(2))dz < / Zzz + 2 9) (f(2) — g(2))dz < 0. (1.5.12)
Now we have
n—1
S S SUMCC VRS ) pE BUM P
- B
=1 st (1.5.13)

_ MQ _
:MlQ/ 22|20 |? ldz:—l/ \z|2(Z|zi|Q Yz
Br " JBr i=1
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where .
Br={2€R"> 22+ |m|”? <R?}, Bp={z€R"|¢| <R}
i=1
On the other hand,
|ZZ| _
le |97t = 12197 12 )97t > Aglz|97, (1.5.14)

where )
w min{l,n%Q}, Q>2,
@ n, Q=1

Then (T.5.13) and (T.5.14) imply

My > M/ |Z|Q+1dz — MRTH-Q-H. (1.5.15)
n Br n(n+Q+1)

From the definition of g(z), we know

/g(z)dz=M1 ~ dz:MlQ/ |2, |97 d2

Br
(1.5.16)

My Qun—
<MiQ [ [sfetas = TG raa

Br n+Q —

Combining (1.5.12)), (1.5.15)) and (1.5.16]), we can gain

1

n(Q—I—n—&-l))Zigl}M%
n+Q-—1 ’

- f(z)dz < /n g(z)dz < (Mlenil)%QJrl( T )

O
Proof of Proposition[1.5.5: First, when Q = 1, Ax = A and (1.5.9) is an obvious

result. For @ > 1 and u € C§°(Q), from Plancherel’s formula, we have

2 2
|||afn|1/Q“||L2(Q) = |[10s., |1/QU’||L2 R™) 1€ )
< |l @ = ||\V|1/Qu||L2(RW (1.5.17)
= H|v|l/QuHL2(Q)
Also,
n—1 )
> 0w, Loy < I1XullZaq)- (1.5.18)

i=1

Combining (1.1.15]), (1.5.17) and (1.5.18)), we can gain the sub-elliptic estimate (1.5.9). O

Similarly, we have

Theorem 1.5.3. Let X = (0yy,++ , 00, %0z, ,,2]0s,), n >3, 4,5 € {1,2,--- ,n — 2},
p,q € N. If Q is a smooth bounded open domain in R™ with QN {x; = 0} # 0 and
QNn{xz; =0} #0. Then X satisfies the Hormander’s condition on Q with QQ = max{p, ¢} +1
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and the generalized Métivier index v = n+p+q. Suppose \; be the jt" Dirichlet eigenvalue

of the problem (1.5.1)), then

k
SN = Ci(np, ¢, DKFE — Calp, q)k, for all k> 1,

Jj=1

where constants C1(n,p,q,2) >0 and C(p,q) = max{é’(p—i— 1),C(qg+1)} > 0 are indepen-
dent of k, and C(p+ 1), C(q+ 1) are constants in (1.1.15]).

To prove Theorem [1.5.3] we need following lemmas.

Lemma 1.5.3. Let X = (aTl7 0 Ipamn_l,xqamn), n > 3) 7’5] € {1527 y TV — 2}7

) YT -2 g 7

p,q € N. If Q is a smooth bounded open domain in R™ with QN {z; = 0} # 0 and
QN{z; =0} #0. Then we have the following sub-elliptic estimate

n—2

S 10wl 32 gy + 1000 17Tl 2 ) + 10, |77 U]l ) < Crll XulFa 0y + Callulliz o),
=1

for all uw € C§°(2), where the constants Cy,Cy are only dependent on p,q,n, §).

Lemma 1.5.4. Let f be a real-valued function defined on R™ with 0 < f < M. If

n—2

[ 2 4wl + |70 () <

i=1

with p,q € NT. Then

n+p+q+2
2 n+p+q ntptg

) ptats Mttt

f(Z)dZ < (p+ 1)(q+ 1)wn—1Mm(3n
R - n+p+q ! 2"

)

where wy,_1 18 the area of the unit sphere in R™.

Remark 1.5.4. The proof of Theorem|[I.5.3, Lemma[I.5.3 and Lemma[I.5.]] are similar to
those in Theorem[1.5.4, Lemma and Proposition [1.5.5

Remark 1.5.5. The result of Theorem [I.5.3 can be deduced to the more general Grushin
type degenerate vector fields

X = {8117 T 81n-kvf1 (j)axn—k-{-l’ v 7fk(i')a:rn};

where T = (x1,- -+ ,Tpn—k) for 2 <k <n, f;(Z)(1 < j < k) are smooth functions with finite
order zero point in . In this case, we can also obtain that the lower bounds of A\ will be at
least polynomial increasing in k with the power 2/v.



Chapter 2

Infinitely Degenerate Elliptic
Equations

2.1 Hypoellipticity and Logarithmic Regularity Estimate

2.1.1 Motivations of Infinitely Degenerate Elliptic Equations from
Complex Geometry

Definition 2.1.1 (Infinitely degenerate elliptic operator). If the system of wvector fields
X does not satisfy the Hormander’s condition on §, then we say that X is an infinitely
degenerate system of vector fields on Q and Ax = Y.i" | X? is an infinitely degenerate
elliptic operator.

Example 2.1.1. Let X = {0y,,0,, " ,0s,_,,0(x1)0s, }, where
N 40
e i, T )
x =
Lp( 1) {07 Ty = Oa

defined on an open domain 0 of R™ which contains the origin, then Ax is an infinitely
degenerate elliptic operator on ).

We can found the motivations for infinitely degenerate operators from the complex ge-
ometry:

Let Q C C* be a pseudo-convex domain or pseudo-convex CR manifold with smooth
boundary. Consider following O-Neumann equation

00*u + 9*0u = f, (2.1.1)

where 0* is L?-adjoint of 0. If for any zy € €, in a neighborhood U of zy and on U N,
there exist € > 0 and C > 0, such that

[ull2 < C|Oull§ + 10" ullg + [[ul)- (212)
Then if f € C®(UNQ), we have u € C>°(U N Q)ﬁ. -
The principal part L of -Neumann operator 00* + 0*0 is a sum of square operator with

real dimension n = 2k — 1, and satisfies the sub-elliptic estimate (2.1.2)).

41
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Indeed, we can choose real C'*° vector fields X, j = 1,2,--- , 2k, spanning the real and
imaginary parts of holomorphic vector fields tangent to the boundary in such a way that

2k
L=-) X;X;,
j=1

where X7 is the formal adjoint of X;.
The simplest example is the operator on the boundary of the unit ball in C2. After a
change of variable to R3, the principal part L of 9-Neumann operator is

L= —{(0p, +22204,)% + (00, — 22104,)?}. (2.1.3)

Then L is finite type degenerate elliptic operator, and the sub-elliptic estimate (2.1.2]) holds
fore = 1.
2
In connection with (2.1.3)), it is also worthwhile to recall the example of H. Lewy [35] of an
operator (0 as it acts on scalar functions), that is not locally solvable. In these coordinates
Lewy’s operator is

(8301 + 2.1’28903) + ’L(aw - 21618303). (2.1.4)

In 1981, Fefferman-Phong proved that, for degenerate elliptic operators P, the sub-

elliptic estimate holds iff P is the operator with finite order degeneracy (e.g. for

sum of square operator, the Hormander condition is satisfied). That means, at points of

infinite type, the sub-elliptic estimate will be not satisfied. However, there were a lot

of examples in complex geometry in which the boundary of pseudo-convex domain {2 has
singular points with infinite type degeneracy.

Example 2.1.2 (Example for points of infinite type on the boundary). Suppose the boundary
of Q near the origin has the form

N
Re(z,) = Z hj(z1,- -  zio1)[Zem M/ Uz Pzl bz ) (2.1.5)

j=1
where h; are holomorphic functions in Ck=1 with an isolated zero at the origin.

In 1987, Y. Morimoto [39] (also see M. Christ [I3] for general case in 1997) proved
that, if infinitely degenerate elliptic operator satisfies the so-called logarithmic regularity
estimate, then it is hypo-elliptic (the details please see the contents below). Later in 2002,
by using sub-elliptic multipliers method, J. Kohn [27] gave a purely geometrical condition for
the hypo-ellipticity at points of infinite type degeneracy on the boundary of pseudo-convex
domain § (also see [28]-[31]).

2.1.2 Hypoellipticity and Some Applications

The first known hypoellipticity results for infinitely degenerate operators are due to
Fedii[15] by the means of priori estimates, where the simplest example is P = 92 + k(x)ag
with k(z) > 0 for z # 0, \/k(x) is smooth and it may vanish to any order at the origin.
Later, Kusuoka and Stroock [26] obtained the following remarkable result:

Theorem 2.1.1 (c.f. [26]). Let o(§) € Ce°(RY) be a non negative even function which
satisfies: ©(&) = 0 if and only if £ = 0, (&) is non-decreasing in & € [0,00). Define
X = (0x1,0z2,¢(x1)0x3) on C=(R3), then Ax is hypoelliptic on R? if and only if

lim 1 log|p(x1)| =0,
931*)0
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where Cp°(RY) = {u € C°(R');u is bound}.

Remark 2.1.1. The main method in [26] is Malliavin calculus(also called stochastic calculus

of variations) in stochastic process. Later, Morimoto [39] also gain the same results by

using the theory of pseudo-differential operators in PDE. Also, we give the results about

hypoellipticity of some other infinitely degenerate operators defined on R3 (cf. [23,139, [{1))).
(I) The operator

L= 8; + exp(—1/|x1|”)8§2 + x%k(?Q

3’

where 0 > 0, k € N1 then the operator Ly is hypoelliptic if and only if o0 < k+ 1.
(I) If 01,09 > 0, then the operator

Lo = 8%1 + exp(—1/|x1|"1)8§2 + exp(—l/\acﬂ‘”)@i3

1s hypoelliptic.
(III) The operator

Ly = 02 +exp(—1/|21]7)02, — 23%0y,,
where o > 0, k € N, then the operator Ls is hypoelliptic if and only if o < 2k + 2.

Let {X1,---, X} denote a system of real smooth vector fields defined on an open
subset  of R™. For any positive integer k, let X *) denote a matrix whose columns consist
of X1, -+, X,,, together with all vector fields of the form

[Xil ) Xi2]?f,i2:1; T [Xiu [Xiza [Xi37 Tty [Xim—l ) vam o ']Zl,iz,m JdAm=1

arranged in a specified order. The symbol [, ] denotes the Lie bracket operation on vector
fields. For any 2 € Q and m > 1, define A" (z) to be the smallest eigenvalues of the
matrices [X (™) (x)]2. Note that A(™(z) is independent of the choice of the basis in the
space of vector fields and is also independent of the specific ordering of the columns referred
to above.

Remark 2.1.2 (cf. [3]). A (z) > 0 for some m > 1 if and only if Hirmander condition
holds for X at x € Q.

Definition 2.1.2 (Non-Hérmander points). We say that x € Q is a Hormander point for the
operator Nx if there is an integer m > 1 such that \(™) (x) > 0. The set of all Hérmander
point is denoted by H. Note that the sets H is open in ). The points in the closed sets H¢
will be called non-Hormander points.

Remark 2.1.3. It follows from Fefferman and Phong’s results in [16] that Ax is not sub-
elliptic on HC.

Theorem 2.1.2 (c.f. [3]). Suppose that the non-Hormander set H® of X is contained in
a C? submanifold M of Q satisfying codimension M = 1 and M is non-characteristic with
respect to X. Assume further for every x € H€, there exist an integer m > 1, an open
neighborhood U of z, and an exponent p € (—1,0) such that

A (y) > exp{~[d(y, M)]}, for all y € U,

where d(y, M) is the Euclidean distance of y from M. Then Ax is hypoelliptic on ).
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Remark 2.1.4. To prove Theorem[2.1.3, the authors used the probabilistic methods. Also,
Oleinik and Radkevic [45] have shown that if the non-Hérmander set H® of Ax is compact
and non-characteristic, then Nx is hypoelliptic on Q2. However if the compactness assump-
tion on H€ is dropped, then a further hypothesis such as the exponential degeneracy condition
in Theorem [2.1.9 is required, which controls the rate at which the Hérmander condition fails
as one approaches HE€.

For a system of vector fields X = {X1, -+, X,,} defined on an open domain  of R™
with X; € Op(SiO(Q)), the PsDO of order 1, which satisfies the following global inequality

/ QP < C(IXulZz@n + lullza@n), Vv e Co(@),  (2.1.6)

where 4(¢) is the Fourier transform of u(z), C is a positive constant, and w is a strictly
positive, continuous function satisfying w(§) — oo, as |{| = co. Thus we have

Theorem 2.1.3 (c.f. [13]). For a system of vector fields X, suppose that there exists a
function w satisfying

w(&)
log(e + [¢[*)'/2

for which (2.1.6) holds. Then Ax is hypoelliptic in Q.

— 00, as |§] = oo, (2.1.7)

Remark 2.1.5. (1) The hypothesis is the optimal condition of this type (see Theorem
2.1.1)).

One example for the operator 8%1 +8§2 —|—e—(2/’51)8§3, in R? satisfies the inequality
with w(&) = log(e+[€|2)'/2, and fails to be hypo-elliptic (also see the result in Theorem|2.1.1
above).

(2) An equivalent formulation of is that for each § > 0 there should exist a positive
constant Cs such that for each real valued function u € CZ(Q),

2.
[ (log < &> ale)de < 81 XulRqun + Callulsany, (2.18)

where (also thereinafter) < & >= (e + |&|?)/2.
(3) If X satisfies the hypothesis in Theorem then for every relatively compact open
subset U CC  and each small § > 0 there exists Cs > 0 such that for all u € C5°(U),

(2.1.8)) holds, which leads to the hypoelliptic of ANx by Theorem .

Now we give the sketch of the proof for Theorem [2.1.3

Definition 2.1.3 (Symbol class Sg}l;(Q)). Suppose ) is an open set in R™, m is a real
number and 0 < p,d < 1. The symbol class of order m on (), denoted by S;%(Q), is the
space of functions p € C°(QxR™) such that for all multi-indices a and 8 and every compact
set K C €, there is a constant Cqy g x such that

sup IDEDgp(x,€)| < Capxc(1+ [g)mPlelToIAl
xE

Definition 2.1.4 (Symbol class STS‘). Denote by Sf‘g‘ the intersection, over all € > 0, of

all classes 755 (R™).
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Definition 2.1.5 (Symbol class S™*). a(z,&) belongs to the classes S™F if a € C(R™ x
R™) and satisfies

02000l )] < Cap < € > (log < § >)+1FI+ol,

for all o, B, and (z,€) € R™ x R™, where < £ >= (e + |£]?)Y/2.
Remark 2.1.6. It is obvious by definitions that S™F C Sf‘d”.

Recall that if a, b are symbols in some classes 57 and 5] 5, and p > 4§, then Op(a)oOp(b)
has a symbol a ® b with an asymptotic expansion

a® b(.’L‘,f) ~ an8§‘a(m,£)0§b(m,§),

where ¢, = (a!)~1(—i)®. The notation ~ indicates convergence in the usual asymptotic
sense: for any positive integer N, the difference between Op(a) o Op(b) and an operator
associated to the symbol 37, n ca0f a(, £)05b(x, §) is smoothing of order m+n—N(p—4)
in the scale of Sobolev spaces.

Proof of Theorem [2.1.3: The detail proof of Theorem can be found in Christ [13],
in which we need to use the technique of micro-local analysis. Here we only give a sketch of
the proof.

We divide the proof into four steps as follows.

Step 1: Let L = —Ax. Then there exists a pseudo-differential operator G of the form

G:ZBjoXj+ZonBj+BO, (2.1.9)
J J

where By € Op(S°?) and Bj,Bj € Op(S%1) for each j > 1, such that

(L + G)mAny = mALn: + R, (2.1.10)

for some R belonging to Op(Sié”ﬂ for every M < oo. Here A is a PsDO with nonconstant

order whose symbol A depends on parameters s and N,

A, &) = [g[re~Nolosltlel@0) for |¢] > e, (2.1.11)

where the function ¢(z, &) € C (R" X (R”\{O})) is nonnegative and homogeneous of degree
zero with respect to £ and has compact support with respect to x. Then the non-negativity
of ¢ implies that A € §%° C Sf,‘g. On the other hand, 7, 12 are the cut-off functions in 2,
satisfying 11 = 1 in a neighborhood of supp ..

Step 2: Let G be a pseudo-differential operator of the form . Then for any fixed
relatively compact subset U C 2, any § > 0 and any f € C? with support in U,

(G ) < Cs / log? < € > | () 2de + 8 31X, f 220 (2.1.12)
J

Step 3: Let L = —Ax satisfy (2.1.6)) and (2.1.7)). Let s, M € R be fixed. If Ny in (2.1.11)
is chosen to be sufficiently large in the definition of A, then from (2.1.10f) and (2.1.12)), we

choose the cut-off function 775 = 1 on the support of u. Then for any fixed relatively compact
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subset U CC Q and u € C5T(U), since (L + G)nAngu = mALnau + Ru = mALu + Ru,
and then if we choose v = 1 Au € 002 we can prove that

(L + Gyo,v) = 31 X50l + ol + O(jlwl - Gel) ).

J

Thus from (2.1.12)),

DXl < i ALull? + | Rul® + C(lo))? + | Goll?)
i

< lmALu|® + || Rul|? + C|jv|% + Cj /10g2 < &> [o(6)Pde+ 8 1 X 0],
J

Since ||[v]|? can be majorized by [log? < ¢ > |#(€)|?d¢. Thus we choose § < 1 to get

Z X012 < Cy /10g2 < &> [0(6)PdE + |mALu||® + Colul|3-a
J

Then from the condition (2.1.7) in Theorem [2.1.3] we have
S0l 2 4 [ 1088 < € > 0(©)de - CaloP
J

for arbitrarily large A. That implies
[108® < &> 10(€)de < ClmALul? + Clully-us + ColP
for some constant C' > 0. Finally we can deduce that

[mAu||r2 < CsllmALu| 2 + Cal|ul|g—r, for any u € C5T(U). (2.1.13)

Step 4: Using the estimate (2.1.13)), similar to the finial part of the proof of Theorem
we can complete the proof of Theorem [2.1.3] O

2.1.3 Logarithmic Regularity Estimate

Definition 2.1.6 (Logarithmic regularity estimate). Let Q@ C R™ an open domain, and
X = (X1, Xa,--+, Xpm) be an infinitely degenerate system of vector fields on Q. If for s > 0,
there exists C > 0 such that

||(10gA)SUH%2(Q) < C(HXUH%,?(Q) + HU”iz(Q))? for any u € Cg°(Q2), (2.1.14)

where A = (e? + |V|2)'/2. Then we say that X satisfies logarithmic regularity estimate.

Remark 2.1.7. From Theorem [2.1.3, if X satisfies the logarithmic regularity estimate
with s > 1, Then Ax is hypo-elliptic. Also, we have a very simple example which
satisfies the estimate but not satisfies for any s > 1. It is the system of
vector fields in R such as X1 = 0y, X2 = Op,, X3 = exp ( — (|z1]|1og |z1]]) ") Ouy (cf-
£4).
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Let X ; denote the repeated commutator

[;K317[;K527[)(jzﬂ"'[}(' ;Xﬁk]"'}ﬂv

Jk—17

for J = (41, -+ ,jk), ji € {1,--- ,m}, and |J| = k. For k > 1, we take
G(z,k) = min Z |Xs(z, &) g(t,j, k,20) = G((exptX;)(zo), k),
where (exptX;)(xo) denotes the integral curve of X, starting from zo € I'. Here I' = {z €

0,3 ¢ e s X (x,€) = 0, for any J}, and gf’k(zo) = ﬁfjg(t,j,k,xo)dt is the mean
value of g(t, j, k,xo) on the interval I.

Theorem 2.1.4 (Sufficient condition). If s > 0 and there exists €1 > 0 such that

{sup (|7

for any xog € I'. Then there exist constants Cy > 0 which is independent with €1 and Cg,
such that

1
s

inf log gi°* TC (= ok } 2.1.1
svopen o 1 cicm 0g 97" (x0)]); I C (—p, ), 7" (w0) < p <e1,  (2.1.15)

||(log A)SuHZLQ(Q) < Cosfs/ | Xu|?dz + C¢, Hu||2L2(Q), for any u € C§°(Q). (2.1.16)
Q

Lemma 2.1.1 (Sawyer’s lemma, c.f. [53]). Let Iy be an open interval in RL and let
V(t), W(t) > 0 belong to L}, .(Io). Then we have the estimate

loc

’ V(O)lv(b)?dt < C ’ (WOl +[v'()]*)dt,

for all v € Ci(Iy) with a constant C > 0 if and only if
Vi < A(BBWsy +2|I172), for any interval I with 31 C I,

holds with a constant A > 0. Here 31 denotes the interval with the same center as I but
with length three times, Ur, = ﬁ fll U(x)dx denotes the mean value of function U(z) on
the interval 1.

Brief Proof of Theorem [2.1.7]: Here we only give the sketch of proof for Theorem [2.1.4]
the details please see [42].
It follows from that there exist some j € {1,---,m}, d >0, k € Nand u > 0
such that ' 4
|og g7 (o) [** < (26)**|1]7%, if I C (—p1, ) and g7 (w0) < 6.

Take the new local coordinates = (x1,2’) in a neighborhood of zy such that o = (0,0)
and the line ' = constant vector in R"~! is the integral curve of X; starting from (0, z’).
Since G(z; k) is continuous, we have

|log g7 (0,2")[* < (4e)®|1172, i I C (—p,p) |2'| < 1, and g7"(0,2") < 6,

by taking other small p, § > 0 if necessary. For a moment we consider 2’ as parameters. Let
) be a large parameter satisfying A > 1/8. If g%¥(0, 2/)A < 1, then we have — log ¢7* (0, 2') >
log A and hence

(log \)* < (4)>* (11|72 + g7 (0,')X%), ¥I C (~pu, ). (2.1.17)
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When gi’k(O, ')A > 1, this is also true for A > Ag if \g is chosen sufficiently large, depending
on €.

Let V() = (log\)2?® and W (t) = g(t;4,(0,2'))A\2 = G(t,2';k)A\? in Lemma and
replace 31 by I, we see that (2.1.17) implies

Jon o0 < Coc® [(Dw(OF + Gt DX o) Pt Vele) € CF (—p10):
(2.1.18)

where Cy > 0 is a constant independent of e.
Also, it is well known that

SN X pul? < C{(Axu,u) + [Jul?},
[J|<k

for some 0 < § = d(k) < 1/2. If we set

Q<x1a$/a€,)( Z 526_2|XJU|2) |51:0’

[J]<k
in our local coordinates near xg, then we have q(xq,2’,¢") — G(z;k) > 0 on & € S*~2 and
IDeull* + (¢ (t.2", D")u,u) < C{(Axu, u) + ul?},

where ¢ denotes the pseudo-differential operator with Weyl symbol in R, L
If G(z1,2",€") = q(x1,2',€)|€'| 72, then in view of the Littlewood-Paley decomposition
in Rgfl we may replace the second term by (§¥(t, 2, D")A\?u,u), provided that the support

of the partial Fourier transform of u(z,#') with respect to 2’ is contained in {\/9 < |¢]| <
221/ 1. Though G is not smooth enough in general, the Wick approximation of §* gives

(@ (t, ', D" Nu,u) > (G(t, o'; k))\Qu,u) —C|ul).

Hence ([2.1.18]) leads us to (2.1.16)) for v with supp u contained in a small neighborhood of
. Finally, the usual covering argument shows (2.1.16)) for the general u. O

Example 2.1.3. Let s >0, and
- mlll/s
g0(3’;1) _ e Izl ) X1 7{ 07
07 1 = 0.

Then X = (Opyy- 5 0n,_,,0(21)0z, ) is infinitely degenerate on the surface T = {x1 = 0}
and X satisfies the logarithmic regularity estimate (2.1.14).

Proof of Example [2.1.3: First, from the fact ¢ (21)];,—0 = 0, for all n € NT, we can
obtain that X is infinitely degenerate on the surface I' = {x; = 0}. Next, let

{sup (11

1
s

log g7 (20)|); I € (—p, 1), 7" (wo) < 5}, (2.1.19)

= inf
§>0,keN,u>0,1<j<m
then, we know

1
s

A< ir;f(){sup (|1 logg}’l(ﬂco)D;I C (—u,u)7g§’k(x0) < 1}. (2.1.20)
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Now, we calculate g, (o).

G(z,1) = min Z | Xs(z,£)]” = min Z{ + % (x1)€ )

gesn—1

where © = (21, ,z,), £ = (&1, , &), (2,8) = Z?:l ;5.

Thus for any zo € I' = {1 = 0}, suppose zg = (0, z2, - ,z,), then we gain
exp(tX1)(zo) = (L, 22, -+ ,xy).
Since p(z1) < 1, by direct calculation, we have
g(t,1,1,20) = G((exptX1)(xg),1) = ©*(t).
Then
g7 (z0) = i / (t,1,1,20)dt = i / T g <1,
So, can be written as

A< inf sup (|I|%|logg}’1(mo)\). (2.1.21)
P20 1C (= pop)

Then, we estimate

1 (20)]).

sup (
IC(—p,p)

For any interval I = (a,b) C (—pu, ), we need consider following three cases:
(i) ab = 0. By the symmetry of g}’l(ajo), we suppose that 0 = a < b < p, then

. 1 1 -
¥ tog g} (ao)] = 0% log (5 [ ¢ 7 a) < ¥ 1og (e ) < 25 4 it g
0
(ii) ab > 0. By the symmetry of g}’l(xo), we suppose that 0 < a < b < p, then

1)%|1og g} (o)

: b o ) b o
—(b—a)* log (ﬁ/ e 1t/e dt) < —(b—a)slog (%/ e HIl/Sdt)
- a 0

1 1 7% 1, 1.1 1
S—(b—a)glog(ie ‘3‘/‘)§(b—a)sb 225t 4 (b—a)" log2

<2:tl 4 ,us log 2.
(ili) ab < 0. By the symmetry of g} (), we suppose that 0 < —a < b < y, then

1,1
(Io)|
b

. 1 b o L 1 2

—(b—a)s _— [t]1/s < —(b—a)s = [t[1/s
(b—a) log(b_a/a e dt) < —(b—a)t log (2b/0 e dt)
1

1 -5 1
<—(b-a)*log(ge H) < (b—a)
< 2%+1+,u%2%+1 log 2.

—193+1 1 2(b— a)* log 2
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From above discussion, we know

sup  (|7]*|log gy (wo)]) < 25! + p+ 25+ log 2.
IC(—p,p)

. 2
Taking £; = 251!, we have

inf  sup (\I% logg}’l(xo)D <ej. (2.1.22)

P20 1 (— o)

Then, [@.1.19), (2.1.21) and (2.1.22) imply

1
s

sup (|1

. J,k . o 7.k
5>o,keN7L“>fo,1§j§m{ log 97" (0)[); I  (—p1, 1), 97" (w0) < 8} < e

By Theorem we can prove that X satisfies the logarithmic regularity estimate (2.1.14)).
O

Example 2.1.4. The system of vector fields X = (Opy,--+ ,0u, 1, 0(x1)0s,), for n > 2,

where s > 0 and
1

Ty sin(E)|/¢
e 1 , T1 #0,

O7 T = 0.

p(x1) =
Then X is infinitely degenerate on T' = |
{CCl = O}

Example 2.1.5. The system of vector fields X = (0, ,Ou,_,,p(21,22)0z, ), forn >3,
where k> 1, s > 0 and

ez, Uj, for Ty = {z1 = ]l}, j>1, and Ty =

1
e ‘ml‘l/sxgk, I 7&0,

07 Iy =0.

p(r1,22) = {

Then X is infinitely degenerate on the surface {x; = 0}.

Proposition 2.1.1 (Controllability, c.f.[43]). Let Q be a bounded and connected open sub-
domain of R™, X(X1,---,X,,) be the Lie algebra spanned by the system of vector fields X
and their commutators. If Ax + c(x) is hypoelliptic in Q for any c € C*°(Q), then any two
points of  can be linked by continuous curve made of a finite numbers of the integral paths
of vector fields belonging to X(X1, -+, Xm)-

Remark 2.1.8. (1) It should be noted that the controllability can be deduced from the hy-
poellipticity of Ax + c(x). Conversely, the controllability does not imply the hypoellipticity
of Ax. The first Example[2.1.5 with 0 < s < 1 satisfies the logarithmic reqularity estimate
, which satisfies the controllability but not the hypoellipticity.

(2) The result of controllability will enable us to define the metric (C-C metric) associated
with X. This metric might set light aglow in the analysis for infinitely degenerate vector fields
X.

Now, we give an example to show that the C-C metric induced by the infinitely degenerate
operator Ax may be not doubling.
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Lemma 2.1.2 (c.f. [50]). Let X = (0,,p(x)d,) be a vector fields in R?. Here the function
p(x) € C(R) is even, p(x) > 0 if x # 0, and p(x) can vanish at x = 0 together with all
its derivatives. If Ax is a hypoelliptic operator, define the box

Qr(zy) =l —rz+r] x[y—ro(r/2),y+ro(r/2)],
and ~
Qr(z,y) =[x —r/2,2+3r/4 X [y —ro(r/2) /4,y + ro(r/2) /4].
Then for any r > 0, the balls B((O,y),r) ={zeR? d, (z; (O,y)) < r} satisfy
Q.-(0,y) C B((0,y),7) C Q(0,y), and then r2p(r/2)/8 < |B((0,y),7)] < 4r2p(r/2),
where dy is the C-C metric definded by Definition [1.2.3
Proposition 2.1.2. Let X = (9., p(x)d,) in R?, where s > 0 and
6_‘“”‘11/5 , TH#0,
p(z) =
(=) {0, z=0.

Then (R2,dy) is non-doubling, where dy is the C-C distance induced by the vector fields X.

Proof: From Lemma[2.1.2] we have

B((07y),27")> o(r) _ L@ty
B((0,y),r) ~ 8p(r/2) 8 '

This means
. B((0,y),2r)
im —————
r=0+ B((0,y),7)

That means (R?,d;) is non-doubling. O

= +o0.

Proof of Lemma [2.1.2: Since the operator matrix only depends on the first variable, it
is enough to prove the statement for y = 0. To prove the inclusion in, first note, that any
horizontal line segment is a admissible curve. Next, consider a point p = (zo, F¢(r/2)) on
the "top side” of Q(O, 0), where /2 < g < 3r/4. Let a admissible curve v = -y U~ya connect
the origin to the point p. Here, 77 is a horizontal segment, connecting (0, 0) to (xg,0) and
v2(t) is defined as follows

r

2(t) = (w0, p(r/2)t), t € [0, 7).

Since ¢ is an increasing function on R, , therefore,

@1((0,0).p) < lao — 5[+ 7 <
Therefore, p € B(0,r). Moreover, it is clear that any other point in @, can be connected
to the origin by a similarly constructed curve, so that the distance to the origin is less than
r. This concludes the proof that Q, C B(0,r). To show the other inclusion, let v(t) be the
minimizing curve connecting the origin to any point on the boundary 0Q,.. First, let the
point (z,y) belong to the top or the bottom edge of Q.., i.e. |y| = ro(r/2). Without loss of
generality we can also assume, > 0. The curve 7(¢) is thus an admissible curve satisfying

7(0) = (O’O)a ’Y(T) = (x,y), T = dl((0a0)7 (x,y))



52 CHAPTER 2. INFINITELY DEGENERATE ELLIPTIC EQUATIONS

Then we have

T
ro(r/2) =y — 0] = | / "W(t)dt] < / e < [ p(n(v) (2.1.23)
0
In order to estimate |y (t)|, we first note the following

T= dl ((Oa 0)7 (07 y)) = dl ((07 O)a (71 (t)v 72(t))) + dl ((’Yl (t)a VQ(t))a (Oa y))
Moreover, we have | X — Y| < d;(X,Y), X,Y € R2. Thus, we obtain

T =dy((0,0),(0,)) = \/7%(0 +3(t) + \/v%(t) + (¥ —72(t)? = 2 @),

or |y1(t)] < T/2 and therefore from (2.1.23), re(r/2) < Tp(T/2). By assumption, the
function xp(z) is strictly increasing for > 0 and thus T' > r. Now, if the point (z,y) € 9Q,
satisfies |z| = r, it is obvious that dy ((0,0), (0,y)) > r. This completes the proof. O

2.2 Boundary-Value Problems

2.2.1 Logarithmic Sobolev Inequality

Theorem 2.2.1 (Logarithmic Sobolev inequality, c.f [42]). Suppose that the system of vector
fields X = (X4, -+ ,X) satisfies the logarithmic reqularity estimate (2.1.14) for s > %
Then there exists Cy > 0 such that

/|u\ [log | )|2degco[/ﬂ\xu\zdz+||u||%2(m}, for all w € H (). (2.2.1)

The proof of Theorem depends on the following lemma:
Lemma 2.2.1. Let 02 > 0,B > 0, {v;}jen be the sequence of H}(’O(Q) satisfying

[ 1usPlog oy < B
Q

Then for o1 € [0,02), {|v;|?|log|v;||'} is uniformly integrable and there exists a convergent
sub-sequence v;, such that there exists vg € H}(’O(Q), and

lim / 0, [2[10g v, || i = / lvo | log w0l d.

Proof: We prove that, for any € > 0, there exists ¢ > 0 such that if E C Q, u(F) < 4,
/ \vj\2|log|vj||”1 <e, Vj.
E

But for any € > 0, there exists ¢ty > €2 such that
1

02—01 t

<eg, for all t > tg.
log

Take now & = e(t3log”" to) !, u(E) < §, and

Aj =FEnN {|Uj‘ < to}, Bj =FEn {|’Uj| > to},
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then
[ usPog ol < thlog™ tonl) < e

J
and
[ sPlog ol < [ fosPiiog o) < <.

B Bj
Then {|v;|?|1log|v;||?*} is uniformly integrable and there exists a convergent sub-sequence
vj,, such that

lim / v, [2[1og v, |7 di = / lwo | log w0l da.
O

Let (0,3, u) be a measure space, and f be a measurable function with real or complex
values on 2. The distribution function of f is defined for ¢ > 0 by

A(t) = piw € Q: 1f(@)] > 1}
Then we have

(I). Ay is decreasing and right continuous;

(IT). If f < g, then Ay < Ay;

(III). If | f,,| increases to |f|, then Ay, increases to Af;
(IV). If f =g+ h, then Af(t) < Ag(3t) + An(30).

In fact, Ay defines a negative Borel measure v on (0, 00) such that
v((a,b]) = As(b) = As(a) = —p({zia < |f@)] < b}) = —p(1f17 ((a.b])).

Thus we use the Lebesgue-Stieltjes integral to get the following formula (cf. Folland [17]
Proposition 6.23):

If Af(t) < oo for all t > 0 and ¢ is a nonnegative Borel measurable function on (0, c0),
then

[ oolsian=— [ otwaro). (2:22)
Q 0

If ¢ € C, and @(¢)Af(t) — 0 as t — 0 and ¢ — oo respectively, then

/Q solfldn=— [ sdr( = [ s O (2.2.3)
0 0
Now, let us give the proof of Theorem [2.2.1

Proof of Theorem [2.2.1]: Take v € H ((Q), we use the same notation for the 0 extension

of v, i.e. v € H¥(R™). As in the classical case, there exists a mollifier family {p.,e > 0}
such that

pexv € CF, limpoxv=vin I3, and | X(pe *v)| g2 < C{lXv] g2 + [ol]z2).

Also
[(log A)* (pe * v) |72 < C{||(log A)*vl| 2 + [[v][Z2},
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with C independent of e. By using (2.1.14) and Lemma we need only to prove the
following estimate:

/|v\ | log( TR ‘ )|25 Ydzr < Cyl(log A)*v||32, Vv € C§°(Q). (2.2.4)

By the homogenization, we prove (2.2.4) for v € C§°(Q) and ||v|| 2 = 1. Since 2s — 1 > 0,
we have

[ 1P log ol e < €l + [ o log ol o
@ lvlze (2.2.5)
< Cy +/ [v|*log®* ™! < v >du,
Q

where < v >= (€2 + |[v|>)1/2.
Since 2 is bounded, v € L>*() and 2s — 1 > 0, we have from the formulas (2.2.2)) and

[£:2:3) that

/ w2 log®* ™! < v >dx = —/ Mlog® ™t < A > duf|v] > A}
Q 0

3

= log® < A > 425 —1)——
/0( i +(2s )<)\>2

log™ ™2 < A > )u(|v] > N)dA,

where () is the Lebesgue measure. Since < A, log < A >> 1, we have that

<>\>2
/ [v[?|log [v]|**~'dz < Co + Cs/ Alog? =t < A > p(Jv] > A)dA. (2.2.6)
Q 0

So we need to estimate the second term of right hand side of (2.2.5). For A > 0 we set
v =014+ v24 With 01 4 = 9(§)1{j¢|<ea}. Then

A A
plol > A} < pi{Jonal > 53+ dleaal > S},
For the first term we have
Jvs,alle < o1l < [vllz2l1gej<eayllze < Cne ™.

Choose now Ay = 2 log (ﬁ), we have p{|vi,a,| > 3} =0, hence
/ AMog® ™t < A > p(lv] > N)dA
0
<Co+ Cs/ Mog®* ™t Au(|v] > N)dA

o0 A
<Co+C, / Nog™ ™ Az, a4, > 5)dA
2s—1 )\
A

> lo
<Co+ 203/ g ||U27AA ||2L2d)‘

€
2s—1 )\

]
< Gy 420, / log” A / (0(6)[2dgdA.
e A (€eRm;[€[>eAn}
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Now |£] > e* implies that A < 4C,, < |¢| >"/2. By using Fubini theorem we have

/ Mog® ™1 < A > p(fv] > A)dA
0

4C, < |€|>"/? logZs~1 \
<Co+20, [ Jo©P [ B Ranie
R™ e

<Co+20, [ (P08 (4C, < €] >

n

< Cs/ [8(6)?10g™ < [¢] > d€ = Cs||(log A)* 0|2 (-
Rn

Thus we have proved (2.2.4) by using (2.2.6). O

Proposition 2.2.1. Let Q2 be an open bounded domain in R™ and the system of vector fields
X satisfy the logarithmic reqularity estimate (2.1.14)) with s > 1, then the embedding from
H}(,O(Q) to L?(2) is compact.

Proof: Suppose {uz} is a sequence in Hi ((Q) with el a1 @) < C < oo. From logarith-

mic Sobolev inequality (Theorem , we know [, |u|?|log |us| |28_1d$ is bound. Then by
using the result in Lemma we can obtain that there exists a convergent sub-sequence
uj, in Hy (), which means that the embedding from Hy ((Q) to L*(2) is compact. [

Now using the result of controllability (see Proposition|2.1.1)) and the embedding theorem
(see Proposition [2.2.1]), we have following Poincaré inequality.

Proposition 2.2.2 (Poincaré inequality). Suppose that the system of vector fields X satisfies
the logarithmic regularity estimate (2.1.14)) with s > 1. If 09 is C*° and non-characteristic
for X, then the first Dirichlet eigenvalue \1 of —Ax is positive and we have the following
Poincaré inequality

)\1||u||2Lz(Q) S/ | Xu|*dz, Yu € H)l(,O(Q).
Q

Proof: We set
AL = inf Xo|? )
”‘PHLZ(Q):IWGH}(’O(Q){|| 122 ()}
Suppose that Ay = 0. Then there exists {¢;} C H)l(,O(Q) such that || X¢;| 12y — 0 and
| X¢;llL2(0) = 1. Then Proposition tells us that Hy () is compactly embedded into
L?(Q). The variational calculus deduces that there exists ¢ € H)1<7O(Q), 1@l 2 =1, ¢ > 0
satisfying

Since X satisfies the logarithmic regularity estimate (2.1.14f) with s > 1, then A x is hypoel-
liptic in Q, we have @ € C*°(2) and

X;jp(x)=0,VzeQ, j=1,--- ,m.

This implies that ¢ is constant along the integral paths of vector fields of Xi, -, X,,.
Now the controllability of Proposition [2.1.1] implies that ¢ is constant on each connected
component of €.

Since 01 is non-characteristic, by taking zo € 0f2, then there exists a X; such that if
X ;¢ = 0 we have ¢(z) = 0 near xy, which means @(x) = 0 on Q. This is impossible because
|@]l22(qy = 1, so we prove finally A; > 0. O
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2.2.2 Logarithmic Non-linear Case

If the vector fields X satisfies Hormander’s condition with the Hormander index @) and
99 is non characteristic for X. We know the Sobolev critical embedding H ,(Q) —
L?/(7=2)(Q)), here the general Métivier index n + Q — 1 < 7 < nQ. If X is infinitely
degenerate (i.e. @ — +00), then we can only expect to get the compactly embedding
H}(,O(Q) < L*(Q) (see Proposition [2.2.1). That means that if the non-linear term of the
equation is the power-non-linearity such as u? with p > 1, we can not ensure the existence
of nontrivial weak solution in the infinitely degenerate case. Fortunately, by using logarith-
mic Sobolev inequality , we can consider the following boundary value problem with
logarithmic-non-linearity term:

—Axu = aulog|u| + bu, in Q, (227)
u =0, on 092,
where Q is a bounded open domain of R™, a,b are constants, X = {X, X, -+, X} is

C* smooth real vector fields defined on €2, which is infinitely degenerate on a hypersurface
I' C Q and satisfies the finite type of Hormander’s condition with Hérmander index @ > 1
on O\T'. Ax = 37", X7 is an infinitely degenerate elliptic operator. Here we assume both
0 and I' are C'*° smooth and non-characteristic for the system of vector fields X.

Theorem 2.2.2. If a # 0, X satisfies the logarithmic reqularity estimate (2.1.14) with
s> 1.
(1) Then the problem ([2.2.7) possesses at least one nonzero weak solution in H ().
(2) Moreover if a > 0, Then the problem (2.2.7) possesses infinitely many weak solutions
in Hy ,(Q).

For a € R, a # 0, we study now the following variational problems

I, = inf I (u), (2.2.8)
{ueHY o(Q)llull p2(0)=1}
with
To(u) = [|Xul2s0 — /Q [uf? log |uldz.

Proposition 2.2.3. Under the hypothesis of Theorem 1, is an attained minimum in
Hy ().

Proposition 2.2.4. The minimizer u of variational problem (2.2.8]) is a non trivial weak
solution of the following semilinear Dirichlet problem

{—Axu = aulog [u| + I u, in €, (2.2.9)

u =0, on 052,

Proof of Theorem [2.2.9(1): From Proposition [2.2.3 and Proposition there exists
a weak solution @ of (2.2.9). For ¢ > 0, we set u = cii, then [ul|z2() = ¢ > 0,u € H}<7O(Q)
and in the weak sense

—Axu = aulog|u| + (I, — alogc)u.

Choose ¢ = ™ > 0, then u is a non trivial weak solution of (12.2.7)). O
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Proof of Proposition[2.2.3: First, we prove that I,(v) is bounded below on

{u € Hy o(Q), [lufl L2 (@) = 1}.

Logarithmic Sobolev inequality give that

|ul
/ |u|?| log( Toll oo e )?dx < CO[ i | Xu|?dx + ||u||2Lz(Q)}, Vue Hyo(Q).  (2.2.10)
For all a # 0, we have

o [ Jul?1og ulds Colel
Q

I /\

/ Jul?|Tog [u] ?dz + Z219T

1+ Colal?
< §HXU||2L2(Q) t—
for all u € {u € H ((Q), [lul|2(q) = 1}. We have that

)\1 —1- C()|CL|2
Tofu) = Xl oy = bl | g fudo > 25 S0

for all u € {u € H ((Q), [lullL2) = 1}
Now let {u;} C {u € H ((Q), |lullL2(@) = 1} be a minimazer sequence of I,, then

1—|—C’0\a|2
2

X w1720

+Ia(Uj) Z 5

It follows that {u;} is a bounded sequence in Hy ((€2). Then there exists a subsequence
(denote still by {u;}) such that u; — ug in Hy () and u; — ug in L*(Q). Also from
I, (u) = I,(|u]), we suppose ug > 0,

liminf; o0 | Xuj|Z2(q) = 1 XuolZ2q), Jim | z2e) = lluollzz(e) = 1.
Then
Io(uo) < Io(uj),j — oo, Io(ug) <1y, uo € {u € H}(’O(Q), lull 20y = 1}
So I, is an attained minimum in H ((9). O

Proof of Proposition [2.2.]): From Proposition the minimizer
u € {u € Hx z(Q), |ull20) = 1}

is a weak solution of (2.2.9)), which is equivalent to

/ZX qucpdx—/ aup log |u|dx — T, /ucpdxfO (2.2.11)

for all p € Hy ((Q). For fixed ¢ € Hy ;(Q) and p € R with || small enough, we put

Uy

A TR T,
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then 4, € {u € Hy (), [ulz>@) = 1}, so that
H(p) = la(iu) = To(u) = Ia,

and
1

H(p) = Ia(uu)"‘alOgHUMHL?(Q)-

||Uu||%2(g)

By direct calculus,

1
H (1) = ||U||2(2/ Xu#Xgodx—2a/ uugolog|u#|dw—a/ Uy pdr)
ullize) Jo 0 o
2 a
_7||u T Ia(u#)/u#godx—i— E /u#godx.
wllLz(q) Q Upllzz() /o

From Lebesgue dominant theorem and using the fact |tlogt| <t +e~!,Vt > 0, we have

lim / uyplog |uy,|de = / uyp log |uldz.
n—0 Jo Q
So, H'(1) is continuous at p = 0, then for any p € R, with || small enough
La(tiy,) = H(p) = H(0) + H'(0)pu + 6(p)p = Ia(u) = H(0),

where §(p) — 0 as p — 0. We get finally H'(0) = 0, this is true for all ¢ € H ((Q), we
have proved the Proposition O

Definition 2.2.1. We say that u € Hy 4(2) is a weak solution of [2.2.7) if
/ ZXqujvdx - / auv log |u|dz — / buvdz =0, Yo € Hy ((€). (2.2.12)
Q5 Q Q

Now we introduce the following energy functional F : H}(,O(Q) — R, defined as

1 = °
E(u):5(/{)2(Xju)2dx—/Qauzlog|u|dx+/9%daﬁ—/ﬂbﬁdaﬁ)- (2.2.13)
j=1

From Theorem we know that, E(u) € C'(Hx (), R). Thus (2.2.7) is the Euler-
2.2.13]

Lagrange equation of the variational problem for the energy functional (2.2.13), and its
Fréchet differentiation is given by

Ew.o) = [

ZXqujvdm—/auvlog|u|dx—/buvdx, You, ve H}(O(Q) (2.2.14)
Q Q

j=1 @

Thus the critical point of E(u) in Hy () is the weak solution of (2.2.7).

Definition 2.2.2 (Palais-Smale Condition). Let V be a Banach space, E € C*(V;R) and
c € R. We say that E satisfies the (PS). condition, if for any sequence {ux} C V with the
properties:

E(ug) = ¢ and || E'(ug) |[v:— 0,

there exists a subsequence which is convergent in V', where E'(-) is the Fréchet differentiation
of E and V' is the dual space of V. If it holds for any ¢ € R, we say that E satisfies the
(PS) condition.
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Proposition 2.2.5 (Mountain Pass Theorem, c.f. [54]). Let V' be a Banach space and
E € CYV,R). Suppose E(0) =0 and it satisfies (1) there exist R > 0 and X > 0, such that
if lullv = R, then E(u) > A; (2) there exists e € V, such that |le|]ly > R and E(e) < A.

If E satisfies the (PS). condition with

= inf E(h(t
¢ = nf max (h(1)),

where
x={heC(0,1];V)|h(0) =0 and h(1)=c¢},

then c is a critical value of E and ¢ > .

Proposition 2.2.6 (Symmetrical Mountain Pass theorem, c.f. [54]). Suppose V is an
infinite dimensional Banach space and E € C*(V,R) satisfies (PS) condition, E(u) = E(—u)
for all u, and E(0) = 0. Suppose V.= V- @V, where V= is finite dimensional, and
assume the following conditions,

(1). 3a >0, p> 0, and for any u € V*, ||lul| = p, we have E(u) > «.

(2). For any finite dimensional subspace W C V, there is R = R(W) such that E(u) < 0
foruw € W, ||lu|| > R. Then E possesses an unbounded sequence of critical values.

Proposition 2.2.7. Ifa > 0, there exist R > 0 and A > 0, such that

(1). E(u) > A, for any ||u||H§(y0(Q) = R;

(2). E satisfies (PS) condition.
Proof: First, by using Hoélder’s inequality, Logarithmic Sobolev inequality and Poincare
inequality, we have

E(u) = 1(/ Zm:(X-u)zdm/aquogmuer/ auzdx/buzdx)
2V Jai ! Q o 2 )

1( 2 2 |ul
= —([| Xul|7- —a/u log ————
2 L (Q) Q |

dw—alog||u||L2(Q)/u2d$
[ullL2(0) Q
2
—|—/ L - bu2dx>
Q

2 0 (2.2.15)
> 3 (Pl - 5o [ oA e = s [ P
2 2Co Jo l[ullL2(0) 0
—alog [Jul2(q) / u2dm)
Q
1 )\1 2 1 2 2
2 5(72(1 ) el @) = (C2+ §)Hu||L2(Q) —alog HUHL2(Q)/QU d$)7
where Cy and \; are positive constants given by (2.1.14) and (2.1.21]), and
25 —2 2Cpa®~ 1 a
= N 2.2.1
o= )73 (22.16)

We set Br = {u € Hy (), lullf1 () < R}, and take R = exp{—(2C2 + 1)/(2a)}, then

E(u)|opy = MR/ (4(1+ A1)).

Let A = A\ R?*/(4(1 + A1)) > 0, then E(u)|op, = A. The result of Proposition 1) is
proved.
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Next, let co € R, and {un,} C Hy () satisfy
E(um) — co, and HJ/(Um)HH;(l(Q) — 0.

Then we can prove that the (PS) sequence u,, is bounded in Hy (). Indeed, for m
sufficiently large, we obtain, from ([2.2.13)), that

2

1 auy,
er oDl o) = Bltn) = 5 (B () ) = [ “d,
where ¢; = ¢g + 1, which means
/Qufndx < My + o) Jumlry - (2.2.17)

where M; = % is independent of m. Next, for m large enough, from (2.2.15)), we have

A1 2 2Cy +1 2 a 2
a2 E(up) > mHUmHH;(YO(Q) - TH“mHm(Q) —5log [[tm | 2() /Qumdm’

where Cy is the constant in (2.2.16]). Since |tlogt| <2 +e~! for t > 0, it yields

A1
ﬂllumllﬁkyo(m <dey + (202 + 1)lumllf2 (o) + allum |72 o) 10g [um 172 q)|
< ey + (202 + DlumllF2(q) + allumllz29) +e7)

< (der +ae™h) + (202 + Dumllf2 (o) + allumlz2(),

which implies that, combining with (2.2.17)),

A
(755 o) iy, o < Mo

This means the sequence {u,,} is bounded in Hy ,(€2), as claimed.
Thus we can deduce that there exists a subsequence (still denoted by {u,,}), such that

Up, — u in Hy o(€), and um, — u in L*(Q).

Now from (J'(tm ), um — u) = o(1), as m — oo, we obtain

lim {||Xum|\%2(ﬂ) - / au?, 10g |um |dx —/ bufndx}
= HXuH%Q(Q) —/ au® log |u|dz — / bu*dz.
Q Q
By the results of Lemma [2.2.1] one has

lim aufnlog|um|dx:/au210g|u|dm.
Q

m— o0 Q

This means u,, — u strongly in Hy (). So E(u) satisfies (PS) condition. Proposition

[2:277 is proved. O
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Proof of Theorem (2) Due to Proposition we know that the operator —A x
has a sequence of discrete eigenvalues 0 < Ay < Ay < A3 < -+ < A\ < ---, with Ay — +o0,
and the corresponding eigenfunction is denoted by {¢x} which is an orthonormal basis of
HY ().

Now, we take u € V = Hx ((Q), then E(u) = E(—u) and E(0) = 0. Taking ko > 1,
th =span{yy; k > ko + 1} and V= span{py;k < ko}, we have V =V @th Similar
to the proof of Proposition 1), we can deduce that there exist p > 0 and a > 0, such
that for any u € V,:g with [lul|g1 (€2) = p, we have E(u) > a > 0, the condition (1) of
Proposition holds. 1

On the other hand, for any finite dimensional subspace W C H}()O(Q), we know that

there exists ko > 1, such that W C V, “=span {¢y; k < ko}. Thus there holds for any w € W
and 0 <e <1,

/(Xw)zdm < Ao / wldz < )\kOHwH%&o(Q).
Q Q :

For any nonzero u € W, we take t > 0, then
au?
E(tu) = t2/ | Xu|?dx — / au® log [tuldz + t2/ —dx — t2/ bu’dx
Q Q

gAkot2\|u||§& 7t2 log |t|/au /au log|u\dx+/ —dxf/ﬂbzfd:c}

Thus for R = R(W) > 0 and any nonzero u € W, we take t > 0 large enough, then there
exist positive constants C7 and Cs, such that

sup E(tu) < C1t* — Cyt*log |t| — —o0, as t — +oo.
{u€W7HtuHH1 (Q)—R}

This means the condition (2) of Proposition is satisfied. Hence the functional J has a
unbounded sequence of critical values. Actually, Proposition [2.2.6] guarantees the existence
of following unbounded sequences of critical values for the functional F,

Br = inf sup E(h(u)), for k> ko, (2.2.18)

UEXE uEW),
here W, = span{y;;j < k}, and
Xk = {h € CO(HY o(Q);HY o(Q); his odd , h(u) = u if w € W,
and ||uHH§(YO(Q) > R, for j <k and R; > O}.
Therefore, there exists a non-trivial sequence uy € H)l(,o(Q) satisfying
E(ug) = B, and (E'(ug),v) = 0 for any v € Hy ¢(9).

Hence, ([2.2.7) possesses infinitely many non-trivial weak solutions. O

Next, we study the following boundary value problem of semi-linear infinitely degenerate
elliptic equation with potential term:

{—Axu —eVou = auloglu| +bu in Q, (2.2.19)

u=20 on 0f) ,
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where  is a bounded open domain of R™, a,b are constants and X = {X, Xo,--- , X, } is
C* smooth real vector fields defined on €2, which .

Now, we consider following conditions:
(H-1) 99 is C*° and non characteristic for the system of vector fields X;
(H-2) X is infinitely degenerate on a non-characteristic hypersurface I' C Q and satisfies the
finite type of Hormander’s condition with Hérmander index @ > 1 on Q\T;
(H-3) X satisfies Logarithmic regularity estimate with s > 3/2;
(H-4) The non-negative singular potential function V,,(x) € C*(Q \ {0}) is unbounded at
{0,0,---,0} € T, and satisfies the Hardy inequality

Vyuldr < / | Xuldz, for all u € Hy ¢(Q). (2.2.20)
Q Q

To study the existence and regularity of the solution to (2.2.19)), we first give examples
satisfying the Hardy inequality.

Proposition 2.2.8. Let X = (0y,,+* ,0x,_,,0(x')0z, ), where

1
sou/):{e AT £,

0, T = 0,

with s > 1, ©’ = (21,22, ,Tn_1).
(1) If Vr(z) = (”53)2 \ml|2> then Vy, 1(x) € C°(O\{0}) (for n > 3), and

/ Vaaulde < / | Xul?dx, for anyu € Hy (). (2.2.21)
Q Q '

o7 exp (— —Ly)
(2) If Vao(2) = ("5%)* o5 (17%)!%?‘“’2”27 z = (z1,2") = (x1,22, - ,@p), then V,, o(2) €
ESYl ==

C*(Q\{0}) (for n > 3), and when x1 — 0 we have V, 2(x1,2") — 0 if 27 # 0 and

Voo(z1,2") = +oo if " = 0. Thus for Q C {x = (z1,2") e R, | |21] < \/g}, there holds

/ Vyou?dr < / | Xul?dz, for anyu € Hx ((9). (2.2.22)
Q Q

Lemma 2.2.2. Forn >3, C5°(Q\{0}) is dense in H ().

Proof of Proposition [2.2.8: From Lemma [2.2.2] we only need to prove the results for
the function u € C§°(Q2\{0}).
(1). Take a radial vector field R; as,

Ry = 21021 + 12022 + -+ + Tp_1077_1 + Tp0(2") Oy,

then one has R(V,, 1) > —2V,,1 and div(R;) =n — 1+ ¢(2'). Thus

/—2Vn,1u2dx§/Rl(vn,l)qux:—/div(Rl)VnJde—/ Vi Ry (u?)dz.
Q Q Q Q

This implies
/(n -3+ @(a))Vy1ulde < —/ Va1 Ry (u?)dz, (2.2.23)
Q Q
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and
—/ Vo Ry (u?)dx = —2/ VpuRy (u)dz
Q )

U+ 2uz,p(x’) 0y, u)dx

n—1

— / Vi1 (2uz10p, u + 2ux20,,u + - - - + 2uzy— 10,
Q

N=

/ 2 (22 a2 4ot a2 )uldr) / (£ 00,0)? + ((a)0s, u)?)da) .

Q
Observe that,
Vaa(af + a3+ +a3) = (——

and
n—3+p@)>n-3.

Then we deduce from ([2.2.23)) that,

/Vnﬁluzdmg (/ 1l dm % /|Xu| dx %
Q

/Vn,lquxg/ | Xu|dz,
Q Q
as claimed.

(2). For V,, 2, we take the following radial vector field Ra,

which means

Ry = xi’@xl + 22022 + -+ Tp_10T5 1 + Tpo(x’) 01y,

then Ry (Vy,2) > —222V,, 5 and div(Ry) = 322 +n — 2+ ¢(z’), which means
; 1Vn, 1

/sz%VnUZdCES/RQ(Vn,g)u2dx:f/ di'U(RQ)VnQ'U?dI*/ Vngg(uZ)dx.
Q Q Q Q
Thus we have

/ (2 4+n -2+ p(a))V,2u’de < 7/ V2 Ro(u?)dz, (2.2.24)
Q Q

*/ Vn,sz(uz)dz: 72/ Vn2uRs(u)dx
Q Q

= 7/ Vn72(2uac‘{f8xlu + 2uw0p,u + -+ 2Ty 10y, U+ 2z p(2))0,, u)d
Q

and

2(/ Vgg(xf;‘ﬂg+...+x3)u2dx)%(/ (05 (Ba,)? + (p(a') D, 1)) dx) 2.
Q Q

Since 2§ > exp{ — ﬁ} for |x1| < é, then

n—2 n—2
Vaa(el + @i+ + ) Sai(—5—)* < (—5)%

and
i -2+ ) >n -2
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Thus we have from (2.2.24)),

/ Vi ou?de < (/ Vn72u2dx)%(/ |Xu|2dx)%,
Q Q Q

which implies

/Vn,2u2dsc§/ | Xu|?dz.
Q Q

Proposition [2.2.8] is proved. O

Proof of Lemma[2.2.2: By the definition of Hy ((f2), it suffices to show that

0o oo o e
Co° () c Cge(\{o})" "o,
Let ¢ be a C* function, satisfying
0 ifo<n<l,
o) = {1 ity > 2.

For u € C§°(9), let € > 0 small enough, and then we set u.(z) = ¢(L|z|)u(x). Thus
ue(x) € C§°(Q\{0}) and

e = uliZy i = 1X (e = )3y + llu = ul3a(0)
By using the dominated convergence theorem we have that, as ¢ — 0,

lue = ul[Z2¢q) = 0, and [, lp(L|z]) — 112 Xu(x)[>dz — 0.
On the other hand, we know that

1 2 1 2 2
| X Gl 190 (L fel) Flu(o) s
<5 [ IV6(Zlel) Plu(o)Pda

C
< Sz IVel2 / dz
g2k L= Je<iol<oey

< (C'e"2 50, ase — 0.
O

Next, we have the following results for existence of solutions to (2.2.19) (also see [§]-[9]).

Theorem 2.2.3. Under the conditions above, then we have
(1) The semi-linear Dirichlet problem (2.2.19) possesses at least one nonzero weak solu-
tion in H)I(,O(Q)-

(2) Moreover if a > 0, the semi-linear Dirichlet problem (2.2.19)) possesses infinitely
many weak solutions in H)I(,o Q).

Remark 2.2.1. The proof of Theorem[2.2.3 is similar to the proof of Theorem[2.2.3 Also,
we need following lemmas mainly concerning the Hardy term V,(x).
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Lemma 2.2.3. Under the hypothesis of Theorem[2.2.3, the first eigenvalue 1y of the operator
—Ax — €V, is strictly positive and satisfies the following inequality.

1
HUH%Q(Q) < 77—1(/Q | Xu|?dx —6/QVnu2dx), Vu € Hy (). (2.2.25)

Lemma 2.2.4. Under the hypotheses of Theorem[2.2.3, the positive operator —Ax — eV,
has a sequence of discrete eigenvalues 0 < 13 <My <3 < - <y < -+, and N, — 00,
such that for any k > 1, the Dirichlet problem

{_AXSOk — eVor = Mepr,  in Q, (2.2.26)
®

k=0, on 09,

admits a non trivial solution py, € H}QO(Q). Moreover, {¢k}r>1 constitute an orthonormal
basis of the Sobolev space Hy ().

Lemma 2.2.5. Let V,, € C°(Q\{0}) and satisfies the Hardy inequality (2.2.20), tpym — u
in Hy 4(Q), as m — 400, then there exists a subsequence {um, }, such that

(1) lim / Vi, pdx = / Vaupdz for all o € Hy ().

k—o0
(2) hm/ numkdx:/Vnu dz.
k—o0 O Q

Now, we concern the regularity of the solution to (2.2.19).

Theorem 2.2.4. Under the conditions (H-1), (H-2), (H-3) and (H-4), if 0 < e < 1, and
a # 0, then we have

(1) If uc € H}(’O(Q), ue > 0, and ||uc||z2(q) # 0 is a weak solution of , then for
l<p< Hsﬂ, one has u. € L*(Q).

(2) Ife€(0,2(1—-1)), u. € Hk o(Q), ue >0 and [luc|| 12y # 0, is a weak solution of
([2:2.19), moreover a < 0, then u. € C®(Q\T)NCY(Q\T) and u.(z) > 0 for all z € Q\T,
where U is the general Métivier index of X on Q\I'.

1+\/175

2p1 1

L e, we can find a

Incase of 1 < p < , one ha

constant 1 > 0 such that =e+1, and for p € [1,p1], we have p L>ct.

Proposition 2.2.9. Under the conditions (H-1), (H-2), (H-3) a
u € Hy ((Q) is a weak solution of ([2.2.19), and u >0, ||UHL2P0(Q
N

constant Ao, such that |[ul| p2ro(q) < Ao, and for 4 =

nd (H-4), if po € [L,p1],
# 0. Then there exists a

[ |+ 1, we have ,

IIHHszo ’

/ | Xare e + / %70 log? (7 )dz < (N + 1)(|al* + 2po[b] + 2polalog Ao|)
Q Q

+ (N + Q)CN,

(2.2.27)

where Cy > 0 depending on N.
Proof: Since 4 € Hy () and [|a| 200 () = 1, for po € [1,p1], then

—Axi —eVpu = atlog i + (b + alog|[ul| L2r0 () - (2.2.28)
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Taking @?P°~! as a test function, we obtain

2pg —
po

/ | Xaro |2da — 5/ Vya?Poda = (b4 alog ||ul| f2ro Q))/ a0 dx
+ L[ g log @ dx,
Po
as 2”;7;1 > 1+ ¢, one has
0
~po |2 L[ o 2~ L o
npo [ |XuP | dx < 5 [ @ logmudz + (§|a| + polb] + polalog Ao|).
Q Q

Take N = [%] +1, then 3 <1 < pon. So we have

N 1
/ | X aPo|?dx < 5/ %P0 log? PO dx + N(§|a|2 + po|b| + polalog Aol). (2.2.29)
Q Q

By Holder’s inequality and the Logarithmic Sobolev inequality, we know for N > 1, there
is a constant C'y > 0, such that

1
/Q 0 log? de < | X (i) 320 + Ci- (2.2.30)

By [@229) x 2550 | @230 < (N +2), we gt

/ | X aPo|?dx +/ @0 log? (i) dx < (N + 1)(|a|® + 2po|d| + 2polalog Ag|) + (N +2)Cy.
Q Q

Proposition [2.:2.9]is proved. O

Furthermore, we gain

Proposition 2.2.10. For pg € [1,p1], we have for any m € N,

/Q | X@Po |2 log®™ 2 (aP°)da + /Q @0 log®™ (P )dx < ME™P(m, po)(m!)?, (2.2.31)

where N = [%] +1, P(m,po) = pg* if m < \/po, P(m,po) —p0 *if m > \/po, and

SIS

M, > [1631\72 +9IN?Cpn + 3N(Con + Q) + 14N%(|a|* + 2/b] + 2\alogA0|)}

Proof: From Proposition the estimate (2.2.31)) holds for m = 1. By induction, we
assume that (2.2.31)) is hold for m € N, then we need to prove that (2.2.31)) is hold for m + 1.
First let us simplify the notations here, i.e, the notations u, @ and py would be denoted by

v, u and p respectively, then we take u?P~! logzm(up) as the test function in both sides of
the equation (2.2.28)) to obtain

2p —1
P2

= %/ u2plog2m+1(up)dx+(b+a10g||v||L2p(Q))/ u? log®™ (uP)dz.
Q Q

2
| XuP |2 log?™ (uP)dx + ?m | XuP 2 log®™ Y (uP)dx — e | Vi (uP log™ (uP))?dx
Q Q Q
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By Hardy inequality, we have
e/ﬂvn(up log™ (uP))?dx < s/ﬂ | X (uP log™ (uP))|?dx
< &:/Q|Xup\2loggm(u”)dm+2ms/Q | XuP|*log®™ ! (uP)dx
+5/Q|m(Xup)logm_1(up)|2dx,

that means

pn/Q|Xup|210g2m(up)dx+2m/Q|Xu”|210g2m_1(up)dx—2pm5/Q|Xu”|210g2m_1(up)dx

<ol [ P log (w)de + p(bl + alog [ollaray) | 010 () da

+p5/ |m(XuP) log™ ! (uP)|*dz.
Q
Since % < n < pn, which implies that

1
N/Q|Xup|2log2m(up)dx
< |a|/ u2plog2m+1(u”)dm+p(|b|—|—|alogA0|)/ u? log®™ (uP)dz
Q Q
+p5/ \m(Xup)logm_l(up)Fdx—i—(2pm€—2m)/ | XuP*log®™ ! (uP)dz.
Q Q

Since pe < 2”?%1 < 2, then 2pme — 2m < 2(pme +m) < 6m, and by Holder’s inequality, one
has

1
~ /Q | XuP|? log®™ (uP)dx
1
< —
=~ 2N

/ | X uP|?| log™ (uP))|dx + 20Nm2/ | XuP|? log®™ % (uP)dx
Q Q
1
+ 1 / u? log®™ 2 (uP)dx + (|a|?* + p|b| + plalog A0|)/ u? log®™ (uP)dz.
Q Q
Thus
N
/Q | XuP|? log®™ (uP)dx < 40N2m2/Q | XuP|? log?™? (uP)dx + 5 /ﬂ u? 1log®™ 2 (uP) dz
+2N(Jaf® + plb| + plalog Ao|) MF™ P(m, p)(m!)?,
which means
/ | XuP|? log®™ (uP)da
Q
< 40N?*(m +1)* + 2N(|a|® + p|b| + plalog Ag|) M7™ P(m, p)(m!)? (2.2.32)

N
+—/ u? 1log®™ 2 (uP)da.
2 Ja
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Now we estimate [, u” log?™ " 2(uP)dz. We set Q = Q, UQF UQ, with @ = {z ¢

Q;u(x) < 1} and

Q3 = {z € Qu(z) > 1,[log™ (u(x)?)| < [lu”log™ (uP)|| (o)},

Qy = {z € Qu(r) > 1,[log™ (u(x)?)| > [[uf log™ (uP)| L2 (o) }-
Then

[ uiog ) < @U(m+ 11,
Q
Secondly, the estimate (2.2.27)) asserts
/ u? 1og®™ 2 (uP)da:
Q3

< I log™ () [ uPlog*u)do
Q
< (N + 1)(Jaf? + plb| + plalog Aol) + (N + 2)C) ME™ P(m, p)(ml)?.

Next, we estimate the third term. By using the Logarithmic Sobolev inequality, we obtain

J

(uP log™ (uP))? log? ( urlog™ (u?) )dx

2p 2m+2/, p
u“P log U d:rg/ m
e [[u? log™ (uP)|| L>(e)

2 Q5

1 m m
ﬁ”X(up log (Up))”%z(sz) + Con||u” log (UP)H%Z(Q)

1 2
& [ X P10 e+ 5 [ X 0g 2 )

+ Con[[u” log™ (uP) |72 (q)

IN

< % / | X (uP)[*log®™ (uP)dz + (Can +m?) MP™P(m, p)(m!)?.
Q
This implies,
/ u? 1og?™ 2 (uP) da
Q
1
<& [ IXGOPI0g e £ 101(0m + 1+ [N+ 20 + Oy (2239)
Q
+ (N + 1)(af> + plb| + plalog Ao|) +m?| ME™ P(m, p) (m!)*.

By (2:2.32) x 2MF 1 (2:2:33) x (N+2), and using the facts that 28 < 4 and N+2 < 3N,
we can deduce that

/ u? log®™ 2 (uP)dx: +/ | XuP|? log®™ (uP)dx
Q Q
< [163]\72 +9N2Cy + 3N (Can + |9) + 14N2(|al? + 2Jb| + 2\alogA0|)}M12m

-P(m+1,p)((m + 1)H2

And this means that if we take

Nl

M, > [163N2 FIN2Cy + 3N(Con + |9]) + 14N2(|af? + 2[b| + 2\a10gA0|)} ,

then the estimate (2.2.31]) holds for m + 1. Proposition [2.2.10|is proved. O



2.2. BOUNDARY-VALUE PROBLEMS 69

Proposition 2.2.11. Under the conditions of Proposition zf for some py € [1 p1],

there exists Ag > e'?, such that |ul|p2e0 () < Ao, then for a4 = Tal e and 6 = 2M1 we
L2P0 (Q)
have .
/ u2p0(1+5)dm S A§p0(1+5)(1+(m)3)7 (2234)
Q
where

My > [163N% + ON?Ciy + 3N(Cay +10]) + 14N(a® + 2b + 2] log Ay )]}

Proof: For any § > 0, one has

1

1 1
( |11p°(1+5)|2dx)2 = ( |aPo o2 dx)2 - ( |upo 108 (@70) 124y, )
Q Q

_ (6 log (@)™ / _ 510g ))
= aP° —_ dx < pos_— =~ 22 |“dx
()] mZ: el @ )
o~ 0" ~2pP0 1 2™ (D0 3 - MM VPo =
Z / log™ (@P°)da)> Z M P(m,po) <py™° Y (6M)"™
m=0 m=0 m=0
Ifé6 = 2M , we have

/ W2P000) gy < 42V 420014
Q

Also for any pg > 1,
2
2v — 4e2VPologpo < (e 12)2175'

)

which implies that if Ay > e'2, then

7

1
/u2p°(1+5)dx SA?’O“”’““WW
Q

as claimed. O

Similarly, we can deduce that

|X(upo(1+5))|2dx <@ +6) (40y) A2p0(1+5)(1+(p0(1+5)) )

Q

(2.2.35)

Proof of Theorem[2.2.7)(1): For 1 < p < V1= ;1—57 let p1 = p, there exists a positive
integer k € N* such that (14 6)* € (1,p], and (1 + 6)* Y > p. Suppose that py = 1, and

1+ () b

*:(14-5) A=A, ,for 1 <i<k,

then for the weak solution u € Hy () with |lullL2(q) # 0, one has, from the result of
Proposition 2:2.11} that

1 1 g
/u2(1+5)i+1d$_/ 2p,(l+6)dm<A2pl(1+5)<1+(ﬁ(1+5))3) SA2(1+6)’+1(1+Zl“(1+5)§).
Q Q

If(5— S L then
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log Ay : 1 \3% = 1 \3
-1 (7> <1 (7) — 14 4M, < 5M,,
log A, +; 1+5) = +; 1+0 A= oM

where M is independent with i. Thus we have for any 1 <i < k,
Q
Therefore if we choose Ay = e'2, A = %M1 =k, then

/ e (A8M1)2(1+6)k+1.
Q

This means u € L2197 (Q). (1 + §)**1 > p, Q is bounded, then u € L2P(). The result
of Theorem 1) is proved. O

Remark 2.2.2. Observe that if € — 0+, then u € L>=(2).

Lemma 2.2.6. Ifa <0, u. € C°(Qy),u. >0, lucll L2y # 0 be a weak solution of (2.2.19))
on an open set 1 C 2, then ue > 0 for all x € Q5.

Proof: Suppose that u.(xg) = 0 for some zy € i, then for any A > 0, there exists a
small neighborhood Uy C Q; of zg, such that 0 < u.(x) < X on Uy. As a < 0, we have
aue () log ue (x) + bus(z) > 0 then Axue, <0 in Up. But zp is a minimum point of u., the
Bony’s maximum principle implies that u. = 0 in Uy. This means that u. is a trivial solution
from the continuity of u. in €y, which is contradiction with the condition ||uc|[z2(q) # 0. O

Proof of Theorem (2.2.4)(2): Now for zo € Q\ T, there exist Vp, Uy, Up such that zo €
Vo cC Uy cCc Uy cC Q\T, 0¢ Uy, and for a cut-off function ¢g(z) € C5°(Uy), ¢o(z) =1
on Uy. let vy = ¢ou,, from the equation we know,

—Axvge = —ucAxdo + eVadoue + agoue 10g [uc| + boous — 237 XjdoXjue, in U,
voe =0, on 9Up.
Set
fs = _usAX¢O + 5Vn¢0us + a¢0us 10g |u€‘ + b¢0us -2 Z Xj¢0Xjus' (2236)
j=1
Then for u. € L?(Up), one has for any 1 < o < p

1\ Z
lue log [u|| % < (g) O lul?, 3C, > 0. (2.2.37)

Hence
2 1\ % % NG 2
[ luctoglucl| ¥ do < (3) 7191+ Cy | JuelPde= (2) 7190 + Colluel Fange-
So for ¢g € C§°(Up), we get

doucloglu| € LT (Up), V1< o < p. (2.2.38)
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On the other hand, V,, € C>°(Q\ {0}) and 0 ¢ Uy, then
eVpdoue € L*(Up). (2.2.39)
Also from —Axu. — eVyue = au, log |ue| + bu. + g(x, u.), we have
Axu. € L7 (Up), and X?u. € L= (Up) for 1 < j < n. (2.2.40)

Next, for 1 < j < n, we know

J i (g ¥ = =2 1) [ (G (X0 ¥
Q o o

Thus we obtain

2
/ |Xju6|%pdx < (—p - 1)/ |uEX12u5HXjue\%p72dx
Q o Q
217 2 3 a 2p p—o
<= =1)([ [ueXjuc|odx)r (| [Xjucl=dx) >,

o Q Q

which means that for 1 < j <n,

AW%?MSCf4)(AMﬁMfQ@ﬁ%ﬁMf- (2.2.41)

So from u. € L**(Up) and X7 u. € L%TP(UO) (1 < j < n), we have, for ¢y € C5°(Uy),

P
o

X;¢0Xju. € L% (Up). (2.2.42)
Finally from ([2.2.36[)-(2.2.42)), we gain that
f- € L7 (Uy). (2.2.43)

Since the system of vector fields X satisfies the finitely type Hormander’s condition on
Q\ T with Hérmander index @, then from the results of Proposition , we can deduce that

vo,e € M>Z(Uy).
Also,
2p 2p
u. € M*= (Uy), and Xju. € MY= (Uy).
On the other hand, 1 < ¢ < p, then for ¢ € (0, 2(1— 1)) C (0, 2(1 — 2)), that implies

’ov

glivi=ec v€1—5 > oi. Therefore for 1 < p < HV1=¢ Vsl_e, we take o satisfies o < 2p, and then the
result of Theorem [1.3.5] (2) implies that

%

. eS8y, ae (0,1 — —————).
Vo, ( 0) « ( 2(1+m))
Also, _
_e st U),ae (01— — 2
" (), a €01 -oa =)

Then we use the result of Lemma to get u. € C 1%Ta(Ul). Also from Lemma m
we know u.(z) > A > 0 for x € Uy, thus

ue log |uc| € S**(Uy), Xjue € S**(Uy).
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Similarly we can take Us such that Vo CC Uy CcC Uy, ¢1 € C§°(Uy), ¢1(z) = 1 on Us,
Vi,e = ¢>1ue, Then,

_AXUI,E = _UeAX¢1 + EVn¢1u5 + a¢1u5 IOg ‘us‘ + b¢1us -2 Z;'Lzl Xj¢1Xjua in Uy,
Ve = 0 on 8[]17

by using the result of Theorem [[.4.3] and the above estimation, we have finally v;. €
Sz’O‘(U'l)7 Ue € Sz’a(UQ).

For any k € NT, we can take V) CC U, CC Ux_y CC --+--- CC Uy CcC Uy, by the
standard iteration procedure, we can prove that u. € S¥%(Uy), then u. € S¥*(V;). This
implies, from the result of Lemma that u. € CHTQ(VO), ie. ue C®(Vp). On the
other hand, the result of Lemma is not hold for the point zo € Q\ T on the boundary
0Q. In this case we can only deduce that u. log |u.| € C°(Vo N Q) even if u. € C** (Vo N Q)
for some a; > 0. The result of Theorem 2) is proved. O

2.3 Estimates of Eigenvalues in Infinitely Degenerate
Cases

2.3.1 Motivations

We consider the following boundary value problem for infinitely degenerate elliptic equa-
tion with a free perturbation,

—Axu=aulog|u| +bu+ f(x), in Q, (23.1)
u =0, on 0f),
where € is a bounded open domain of R"™, a, b are constants, X = {X;, Xo, -+, X,,,} is O

smooth real vector fields defined on 2, which is infinitely degenerate on a non-characteristic
hypersurface I' C ) and satisfies the finite type of Hérmander’s condition with Hérmander
index @ >1on O\I'. Ax = Z;"Zl X? is an infinitely degenerate elliptic operator. Here we
assume also 9% is C*° smooth and non-characteristic for the system of vector fields X.

Theorem 2.3.1. Ifa >0, f(x) € L?(Q) and X satisfies the logarithmic reqularity estimate

(2.1.14)) with s > 1. Then the problem (2.3.1)) has infinitely many nontrivial weak solutions
in Hy ().

Remark 2.3.1. In order to prove Theorem[2.3.1], we need the following Perturbation Theo-
rem and estimates of lower bounds of Dirichlet eigenvalues for —Ax (see Pmpositionm
and Theorem below). For more details of the proof for Theorem one can refer
to [10/.

Proposition 2.3.1 (Perturbation Theorem, c.f. [54]). Suppose E € C*(V) satisfies (PS)
condition. Let W C V be a finite dimensional subspace of V., w* € VAW, and let W* =
W @ span {w*}; also let

Wi ={w+tw";we Wt >0}
denote the upper half-space in W*. Suppose
(1) E(0) =0,
(2)IR>0 Yue W :|ul| > R= E(u) <0,
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(3)3IR* >R Yue W*: |ju| > R* = E(u) <0,

and let
[ ={hecCV,V); hisodd, h(u)=u if max{E(u), E(—u)} <0,
in particular, if w € W and ||u|]| > R, or if u € W* and ||u|| > R*}.
Then, if
g = fllrel{“ UZ%IV} E(h(u)) > 8= }1}61{“ 5;15/ E(h(u)) >0, (2.3.2)

the functional E possesses a critical value > 3*.

2.3.2 Lower Bounds of Eigenvalues

Here we consider the eigenvalues of the infinitely degenerate elliptic operator Ax sat-
isfying the logarithmic regularity estimate (2.1.14) with s > 1, which implies that Ax is
hypoelliptic.

Proposition 2.3.2 (cf. [6, B9]). Suppose that the system of vector fields X satisfies the
logarithmic regularity estimate with s > 1. If 09 is C'*° and non-characteristic for
X, then the operator —/Ax has a sequence of discrete eigenvalues 0 < A\ < Ao < A3 <--- <
A <o, and A\, — o0, such that for any k > 1, the Dirichlet problem

_AX(PIC = )\kgak, mn Q,
i =0, on 012,

admits a non trivial solution ¢y, € H}(’O(Q). Moreover, {¢k}r>1 constitute an orthonormal
basis of the Sobolev space H ().

Proof: Similar to the proof of Proposition [1.5.3 O

Thus, we have the following result (cf. [7]):

Theorem 2.3.2. Suppose that the system of vector fields X satisfies the logarithmic regu-
larity estimate (2.1.14)) with s > 1. If 082 is C'°° and non-characteristic for X, \; is the gth
Dirichlet eigenvalue of the problem (1.5.1)), then

k
D X = C(n, s, Qk(logk)* —k, for all k > ko,
j=1

where ko = [%] +1, C(n,s,02)=(2"-1) ((3'027”45(\ log %FS +n28)>_ , By is

the volume of the unit ball in R™, |Q|,, is the volume of Q, s and Cy are given in (2.1.14).

Remark 2.3.2. If the operator is infinitely degenerate elliptic operator, then the Hormander
index QQ = +00. That means the result in the estimates (1.5.7) gives us nothing information
for the estimates of the eigenvalues. In this case there is even no any asymptotic results for
the eigenvalues estimates. The result of Theorem is the first result on the lower bound
estimates of the Dirichlet eigenvalues for infinitely degenerate elliptic operators.
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Lemma 2.3.1. For the system of vector fields X = (X1, -+, X,), if {¢;}5_, are the set of
orthonormal eigenfunctions corresponding to the Dirichlet eigenvalues {/\j}le. Define

k
z,y) =Y i(2)1;(y)
j=1

Then for the partial Fourier transformation of U (x,y) in the x-variable,

\il(z,y) = (27r)_”/2/ U(z,y)e " da,
we have
[ [ 1eewPasdy =k and [ 1Gy)Pdy < @09,
Q Jrn Q
Proof: Similar to the proof of Lemma[1.5.1 O

Lemma 2.3.2. Let f be a real-valued function defined on R™ and 0 < f < M;. For some
s> 0, if
f(z)dz > 1, and (log(e? + |2*))* f(2)dz < My,
R® R
where My > 24T"e" M, B,,, B, is the volume of the unit ball in R™.
Then we have the following inequality,
n+2s

R 2
Fe)as - Gog( | f(pd < 2
R™ Rn -
Proof of Theorem [2.3.2: First, the problem (1.5.1)) has a sequence of discrete eigenvalues

{Ak}x>1 and the corresponding eigenfunctions {¢y(x)}r>1 constitute an orthonormal basis
of the Sobolev space Hy ((9).

Taking U(z,y) = Zle ¥ (x);(y), then from Lemma we know
| [t Pty =k, and [ )Ry < 20) g
o Jrn Q

On the other hand, using Plancherel’s formula, we can gain

| [ 1R tose + =7 aydz = [ [ ogc? +19.2)"¥(a,)Pdyds,
R™ n
where V, = (0gy, 0y, , 0z, ). Next, the logarithmic regularity estimate (2.1.14) gives

// [(og(e® +Va[)* (x’y)|2dydx§22300(/9/9\X(x)‘lf(m,yﬂ?dxdy

i [ [ (e Pdzay),
QJo
On the other hand, we have

| [1x@.pasa = [ » /| |i(xz@m(x))wj(yn?dx)dy

(|log(MyB,,)|** + n**) M.

N
Il
—

<.
Il
—
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Therefore, from the above calculations, we obtain

k

[ 1P op(e® + 2P dyds < 225Ca(3" Ay + ).
n Q N
Jj=1
Now we choose
k
/ U (z,9)2dy, My = (27)""|Q|,, My = 22°Co( Z/\ + k).
Jj=1

Then we know that 0 < f(z) < My, if we take ko = [ B21%n] 1 1 then for any k > ko,

Com™
we can see

f(2)dz =k >1, and My > 2*e"|Q|,,B,7 " = 215T"e" M| B,,.
Rn

Thus from the result of Lemma [2.3.2] for any k > ko, we have

) 2n+4s 9 an ) k
k(log k)% < 5 1(| log |(2ﬂ_)n 1> +n2%)Cy - (Z Aj+ k).

That means, for any k > ko,

> Csk(log k)% — k,

\|Ma~

-1

where C3 = (2 )(C 2n+4s(|10g |Q2| ﬁ |25 +n2s)) ) O

Proof of Lemma [2.3.2: We choose a constant R > 0 such that
/ (log(e® + |2[*))*g(2)dz = M,

(Z) o Mla ‘Z| < R7
g 0, |z2|>R

where

Since My > 24t7en M, B,,, that means R > 2e. In fact, if R < 2e, then

R
My = / (log(e2 + \z|2))259(z)dz = len,l/ (log(e2 + 7"2))25r”’1dr
n 0
< M, B, (log(5¢2))% (2e)" < 2**T"e" M, B,,,

where w,,_1 is the area of the unit sphere in R", B,, is the volume of the unit ball in R™ and
nB,, = w,_1. Which is incompatible with the condition of Ms.
By R > 2e, one has R > 2v/R, and

R R
My > len,l/ (log(e? + r?))*r"~tdr > len,1225/ (logr)*r"~Ldr
£ £ (2.3.3)

2s
> 9250\ B, (1 — 2_")R"(log %) > M, B, (1 — 2~")R"(log R)**
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Since |(log(e? + |2|%))?* — (log(e? + RQ))QS} (f(2) —g(=)) > 0, we have

a%wﬁaﬁn%/ U@)—M@Mzé/(ba¥+VPN%ﬂd—g@»hS0

n n

which implies
A (2)dz < / g(2)dz. (2.3.4)

Using and the fact [, f(z)dz > 1, we can obtain

2s 2s

[ Gtz (s [ 1) < [ gtz (1o a(:)a)

= M,B,R" - [log(ManR")} " (2.3.5)
< M B,R" - 2%%(|log(M, B,,)|** + (nlog R)*)
< 2% M, B, (|log(M:1B,)[** + n**)R"(log R)*".

From the estimates (2.3.3)) and (2.3.5)), we can deduce that

2s 2n+25 2s 2s
[(2)42)) " < S (log(MyBy) | + n**) M.

J(2)dz - (1og(

R Rn

O

2.3.3 Summary: Finitely Degenerate Elliptic Operators and In-
finitely Degenerate Elliptic Operators

Finally, let us compare the results between finitely degenerate vector fields and infinitely
degenerate vector fields.

If the system of vector fields X satisfies the Hormander’s condition, then Ax is the
finitely degenerate elliptic operator, and the following conditions are equivalent:

(1) The vector fields X is a finitely degenerate with Hormander index Q.
(2) Sub-elliptic estimate:
12
||\V|QU||L2(Q) < ClHXUH%Z(Q) +02||UH%Z(Q)’
holds for all u € C§°(Q2), and some C; > 0 and Cy > 0.
(3) There exists C' > 0, such that for x € Q, r > 0, we have Bg(z,r) C Bx(JC,CT%),

where Bpg is the Euclid ball and Bx is the sub-elliptic ball induced by sub-elliptic metric
(which is also C-C metric).

Remark 2.3.3. (1) Sub-elliptic estimates imply the hypoellipticity of Nx.
(2) From the condition (3) above, doubling property holds for Bx. Thus Sobolev inequality
and Poincaré inequality are all hold.

If the system of vector fields X is an infinitely degenerate vector fields and satisfies the
following logarithmic regularity estimate

I(log A)*ull72(q) < C(IXullF2q) + lullFzq), for any u € C5°(9), (2.3.6)
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with s > 1, where A = (€2 + |V|?)!/2. Then we have

(1) The infinitely degenerate elliptic operator Ax is hypoelliptic.
(2) The C-C distance induced by X can be defined which might be a non-doubling metric.

Remark 2.3.4. (1) If the vector fields X is an infinitely degenerate vector fields, then the
sub-elliptic estimates will be not satisfied. Thus, the reqularity of the infinitely degenerate
elliptic operator Ax can be deduced by the logarithmic reqularity estimate for X.

(2) If X is an infinitely degenerate vector fields, the Sobolev inequality will be not satisfied.
However, in this case we have the following logarithmic Sobolev inequality:

Suppose that the vector fields X = (X1, , X,,) satisfies the logarithmic reqularity esti-

mate ([2.3.6) for s > 3. Then

u _
/ |u|2|log<”u|';(m>|25 o < ol [ 1XuPdo + [ull ), o all u € Hig(@),
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